ЦЕЛЕВЫЕ ЭКСПЕРТНЫЕ СИСТЕМЫ ГЕОЛОГИЧЕСКОЙ НАПРАВЛЕННОСТИ

Мета публикации — висвітлення проблеми впровадження в геологічну практику цільових експертних систем (ЦЕС) геологічного спрямування, що базуються на принципах цільового комплексного моделювання геологічних об’єктів на основі сучасних комп’ютерних технологій з перспективою введення штучного інтелекту. Методологічною основою ЦЕС є комплексна оцінка геологічного середовища, засобом виконання цієї оцінки — комплексна модель відповідної спрямованості. Остання включає структурно-лінгвістичну модель як матричну і низку доповнюючих предметних моделей (гідрогеологічну, геомеханічну, інженерно-геологічну та ін.), набір і зміст яких визначається спрямованістю ЦЕС (ресурсна, для підземного будівництва, охорони геологічного середовища тощо). Розроблена концептуальна схема типізації і змісту ЦЕС. Демонструються приклади розробки цільових структурно-лінгвістичних і комплексних моделей, що слугують основою для створення ЦЕС на різноманітних об’єктах соленосних, титано-цирконієвих і золотоносних формувань типів. Подальший розвиток напряму полягає в розширенні досвіду розробки комплексних моделей, створення на її основі експертних правил обробки отриманих даних і створення відповідного математичного апарату і як наслідок — побудову експертних систем.

Введение. Постановка проблемы

В развитии систем управления деятельностью в области геологии, т. е. разностороннего использования и охраны геологической среды, наметился "кризис жанра", который состоит в противоречии между растущими (кстати, глобально) социально-экономическими и (экологическими) вызовами, поддерживаемыми технологическим прогрессом, с одной стороны, и состоянием информационно-аналитического обеспечения соответствующих управленческих действий — с другой. В основе указанного противоречия лежит недостаточная эффективность традиционных методов этого обеспечения, основанных на аналоговом моделировании объектов и процессов (хотя бы и с определенной ролью компьютерных технологий).

Преодоление этого кризиса возможно путем внедрения в геологическую практику целевых экспертных систем (ЦЭС), базирующихся на принципах целевого комплексного моделирования геологической среды посредством современных компьютерных технологий с элементами искусственного интеллекта. Постановочное освещение указанной проблемы и составляет цель данной работы.

В связи с этой целью ставятся следующие задачи:
– представление принципов, методологии и методов создания ЦЭС;
– обозначение основных направлений ЦЭС, их задач, структуры и содержания;
– демонстрация имеющихся наработок;
– обозначение перспектив развития научного направления.
Основанием для постановки данной проблемы послужили результаты многолетних исследований авторского коллектива в области изучения геологического строения, вещественного состава и моделирования осадочных формаций. Исследования проводили в основном на примерах соленосных, красноцветно-терригенных и россыпных (титано-циркониевых и золотоносных) формаций.

Определение экспертной системы как "целевой" подразумевает ориентированную ее направленность для решения конкретных практически важных задач повышенной сложности, связанных с разноцелевым использованием недр (добыча полезных ископаемых, подземное строительство) и охраной геологической среды.

Предыстория формирования идеи

Идея создания ЦЭС созрела как естественный результат проведения многолетних исследований в области моделирования геологических объектов. Первым этапом было создание концептуальных структурно-литологических моделей (СЛМ) геологических объектов определенных типов осадочных формаций (хорошо изученных авторским коллективом, что позволило разработать эффективные принципы их системной структуризации). Полученный результат, продемонстрировавший высокий информационный и прогностный эффект метода, логически привел к выводу о возможности дальнейшего развития этих функций путем применения геоинформационных технологий. На базе таких технологий нами были разработаны принципы создания цифровых СЛМ. Результаты цифрового моделирования также оправдали ожидания — примеры моделей продемонстрировали высокий уровень технической, информационной и прогнозной функций [6, 7, 9]. Однако при этом стало ясно, что цифровые СЛМ могут быть эффективными лишь для геологических объектов определенного уровня сложности, с решением ограниченного числа сравнительно простых задач, относящихся к ресурсно-геологическому и горно-геологическому направлениям.

В дальнейшем реальная обстановка поставила необходимость решения комплексных проблем, охватывающих несколько аспектов обращения с геологической средой — ресурсных, строительных, экологических и др. (например, месторождение каменной соли Солотвино, Калушский горно-промышленный район). Для решения таких проблем был найден соответствующий методологический аппарат — построение комплексных целевых моделей, которые охватывали бы несколько предметных моделей (базирующихся на цифровой СЛМ). Комплексная модель такого рода обеспечивает решение поставленной задачи и является основой для создания ЦЭС.

Однако предложенная комплексная модель имеет одну уязвимую характеристику: процедура соединения подчиненных моделей экспертами обеспечивает получение более или менее обоснованных решений, но возможности эксперта-человека не позволяют охватить множество модельных компонентов, возникающих при соединении моделей, и возрастающий ряд неопределеностей. Таким образом, на данном этапе наша комплексная модель заканчивается экспериментальной разработкой решений, т. е. с точки зрения общепринятых канонов экспертных систем она может считаться незавершенной.

И именно поэтому мы останавливаемся перед необходимостью решения проблемных задач на основе экспертного анализа результатов указанного этапа, т. е. дальнейшая эволюция данного научного направления (по аналогиям смежных кибернетических областей) уже составляет предмет геологической кибернетики. Соответственно, идентификация ожидаемого результата в ранге экспертных систем (ЭС) в классическом понимании будет правомерной.

Методология и методические подходы

ЭС — направление технологий искусственного интеллекта — понятия, входящего в перечень предметов кибернетики как науки о системе управления.

Принципы создания ЭС разрабатываются с 60-х годов XX ст. с целью решения узкоспециализированных задач, что подразумевает их множественность. Приведем некоторые определения.
ЭС — класс компьютерных программ, которые выдают советы, проводят анализ, выполняют классификацию, дают консультации, ставят диагноз и т. д. Ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом [4].

ЭС — программное средство, использующее экспертные знания в определенной предметной области с целью эффективного решения задач в определенной предметной области, интересующей пользователя на уровне среднего профессионала (эксперта) [3]. ЭС относятся к числу систем, основанных на знаниях, и базируются на двух структурных элементах: базе знаний и аппарате логических решений.

В методологическом плане ЭС включает два начала: 1) традиционную компьютерную обработку базы данных; 2) компьютерную обработку комплекса экспертных сведений и правил, относящихся к обращению с объектом (базы знаний). Иначе говоря, используются не только формализованные и алгоритмизированные в виде математических моделей процессов (динамические подмодели) и свойств объектов (статические подмодели) знания, но и система сведений и логических правил, являющихся специалистами (экспертами) для решения проблемы. Для обработки последних был создан специальный математический аппарат, имитирующий работу эксперта. Для программной реализации такого аппарата используются как современные, предпочтительно объектно-ориентированные языки программирования общего назначения, так и специально разработанные языки высокого уровня для оперирования базой знаний, ее логического анализа и получения решений по поставленным задачам.

Таким образом, структура ЭС состоит из следующего:

1) обычной базы данных о свойствах объекта;

2) математических методов для обработки данных и получения детерминированных или статистических моделей объектов и процессов (в геологии чаще всего — стохастических, состоящих из детерминированной (трендовой) и случайной компонент); 3) базы знаний, содержащей экспертные правила;

4) логического и соответствующего ему математического аппарата получения решения той или иной задачи.

Структура типичной экспертной системы представлена на рис. 1 [10].

Рис. 1. Структура экспертной системы

Классическая ЭС предназначена для обработки плохо формализованной, полулюбовной и неколичественной информации. Наиболее успешным разработчикам ЭС достигли успеха в областях медицинской диагностики, психологического тестирования, шахматных программ, других задачах, связанных с прогнозированием свойств и процессов, которые нельзя решить чисто детерминированными или вероятностно-статистическими методами.

ЭС геологического направления существенно отличаются от других систем. Одним из наиболее общих отличий является то, что фактическим их пользователем является также профессионал-эксперт (а не пользователь-заказчик, получающий готовые решения), поскольку конечным produkтом в большинстве случаев служат не решения, а некий "полуфабрикат", являющийся исходным выводом для принятия решений именно экспертом.

В геологии значительная часть информационного массива представлена именно
количественной информацией, что опреде-
ляет второе и наиболее важное отличие. В
основе геологической ЭС лежит цифровая
модель объекта, из которой уже можно изв-
лекать все необходимые практические ре-
шения. Очевидно, вторым отличием и объ-
ясняется задержка разработок ЭС в
области геологии.

Методологическим принципом созда-
ния геологических целевых ЭС является со-
единение двух теоретических направлений (дисциплин): геологического компьютерно-
го моделирования и геологической кибер-
нетики.

Геологическое компьютерное модели-
рование – создание компьютерного вирту-
ального объемного отображения геологи-
ческих объектов и геологических процессов (процессов, проходящих в геологической
среде).

Геологический объект – участок земной
коры различного размера, выделяемый с
определенной целью при геологическом
изучении [3].

Примером компьютерной модели гео-
логических объектов является цифровая
структурно-литологическая модель (ЦСЛМ). ЦСЛМ – виртуальное объемное
отображение геологического объекта, со-
держащее его структурные и качественные
характеристики [5 и др.].

В области моделирования процессов
известно преобладающее число примеров
относится к гидрогеологическому направ-
лению. В отечественной практике это сис-
тема "Недра", разработанная Институтом
кибернетики и Институтом геологических
наук НАН Украины.

Геологическая кибернетика (в первоначальном определении – геокибернетика) – "...отрасль знаний о закономерностях стро-
ения сложных самоорганизующихся и само-
развивающихся природных и природно-
техногенных систем и протекания в них
процессов управления", иначе – "...объяс-
ных законах хранения, передачи и переработки информации в системах служащими геоло-
го-географическими наук" [1].

Для создания целевой ЭС геологического
направления, очевидно, должны использо-
ваться технологии искусственного интеллек-
та, являющиеся разделом кибернетики, в со-
ответствующей модификации. Общий смысл
задач этих технологий соответствует п. 3, 4
приведенной выше схемы структуры ЭС.

Возвращаясь к п. 3 структуры ЭС, опре-
деляя, что понимание "базы знаний" долж-
но основываться на развитии понятия "гео-
логическое знание". По определению А. С.
Смирновой, геологическое знание – сово-
kупность всех зафиксированных докумен-
tально сведений по составу, строению и ис-
tории развития Земли [2]. Состав знания
охватывает состав всех геологических наук.

Таким образом, для геологических ЭС
базы знаний – свод знаний о закономерностях строения и вещественного состава гео-
логических объектов как систем, взаимос-
вязей между элементами этих систем и
средствами их взаимодействия, между системами и между их элементами и, наконец, развития тех и других. Как
видим, определение коррелируется с об-
щим определением базы знаний как "свода
знаний и правил о взаимосвязи и взаимоотно-
шениях между элементами базы данных"
с учетом спецификации, обусловленной мно-
говещественностью геологических наук.

В этой связи напомним: база данных в
геологии – комплект конкретных данных по
структурным, вещественным и иным харак-
теристикам конкретных геологических объ-
ектов (для статического моделирования) и
параметров процессов в геологической
среде (с привязкой к определенным харак-
теристикам геологической среды) – для ди-
nамического моделирования.

С методологической точки зрения в осно-
ве ЦЭС лежит комплексная оценка геологи-
ческой среды намеченного объекта. Сред-
ством исполнения этой оценки является
комплексная модель (тоже целевая, "проб-
лемно ориентированная", см. далее). Мето-
дологической основой моделирования явля-
ется рассмотрение геологических объектов
как систем, характеризующихся внешней
и внутренней структурами, проходящими
этапы становления и развития и находящей-
мися в определенном взаимоотношении с
окружающими системами. Исходя из этой
позиции, с точки зрения преобладающего
аспекта исследований объекта по фактору
времени выделяются два типа моделей: ста-
тические и динамические. Структурно-лито-
логические модели относятся к числу
статических. Динамическими являются
гидродинамические, палеотранспортные, миграционно-геохимические и т. д. С точки зрения предметности подчиненные модели, составляющие комплексную (модель), соответственно определенным геологическим на-
укам (дисциплинам) или их сочетаниям. Для примеров, которые будут рассматриваться далее, наиболее употребляемыми моделями оказались следующие: структурно-литологическая, гидрогеологическая, геомеханическая и др. (две первые – с подразделением на подчиненные модели более низкого ранга).

Разработка отдельных предметных моделей (с учетом компьютерных) сейчас уже рассматривается как рутинная задача. Од-
нако их соединение для создания комплексных целевых моделей представляет уже за-
дачу более высокого ранга, рассмотренную далее.

В мировой практике известны примеры ЭС геологического направления. Наиболее употребляемыми являются: DIPMETER ADVIS-
SOR, DRILLING ADVISOR, ELAS, LITHO, PROSPECTOR. Большинство имеют технологическую и геофизическую ориентацию. Нам известна только одна ЭС – PROSPECTOR, ко-
тора консультирует геологов в поисках залежей руд. Система оценивает вероятность обнаружения определенных видов полезных ископаемых и оценивает перспективность района в их отношении. Компетентность ЭС основана на геологических правилах, образуемых моделями рудных отложений, и на таксомии пород и минералов.

При создании целевой модели осуществляется дополнение общей структурно-ли-
тологической ее части специализированными исходными данными. Состав базы данных целевой модели определяется целью моделирования. Если таковой явля-
ется прогнозирование полезного ископаемого, в модель могут вводиться контролирую-
щие факторы – литофации, фации, геохимические и минералогические показа-
тели, зоны стадийности литогенеза (для нафтидов – коллекторские свойства, для на-
ложенной минерализации – соответствующие рудоконтролирующие факторы и т. д.), содержания полезного компонента, а также другие данные, связанные с установленны-
ми условиями распределения последнего. При постановке задачи выбрать геологичес-
кой среды для подземного строительства – те факторы, которые характеризуют физи-
ко-mekhanические свойства горного массива (прочностные, емкостно-фильтрационные и др.), необходимые для расчета долговре-
менной устойчивости и изолирующей спо-
собности в соответствии с техническими требованиями к типу сооружения.

SLM первого поколения [5] являются статическими, однако они достаточно эффективны для решения вопросов прогнозирова-
ния, разведки и эксплуатации месторожденных осадочных формаций. Адекват-
ность и разрешающая способность прогнозной функции могут быть повышенны путем введения в моделирование динами-
ческого аспекта, что ставится нами как цель создания СЛМ второго поколения.

Геомеханические модели, предназна-
ченные для оценки и прогнозирования гео-
механического состояния и процессов в горном массиве, при использовании собственной базы данных базируются также на исходных данных СЛМ на основе установленных взаимозависимостей между литологическими характеристиками и фи-
зио-mekhanическими свойствами пород в горном массиве, а также предоставляемой возможности геометризирования их в пространстве массива.

Гидрогеологические модели в своей сущности динамические, последний аспект является предметом гидродинамики. При том, что основная задача гидродинамики – установление динамических характеристик
подземных вод, она в сочетании с гидрохимией служит основой для миграционных схем, а также схем развития карста, оползней и других опасных геологических явлений. Принимая во внимание, что определяющим фактором гидродинамики являются фильтрационные свойства пород, следует вновь отметить роль структурно-литологического моделирования, которое представляет объемную характеристику структурно-вещественной матрицы, в которой действуют потоки подземных вод.

Гидрогеологическое моделирование является наиболее развитым и методологически обоснованным напряжением геоинформатики, оно достаточно широко освещено в научной литературе.

Функциональные возможности моделей определяются их предметностью применительно к задачам ЦЭС. Рассмотрим для иллюстрации пример ЦСЛМ. Функциональные возможности этой модели показаны для статических, динамических и ретроспективных аспектов, представляемых соответствующими подмоделями (рис. 2). Прокомментируем дополнительно содержание рисунка касательно направлений ЦЭС, приведенных далее.

Для направления использования сырьевых ресурсов функциональные возможности моделирования включают следующее.

Для статической подмодели:
- выделение фаций (и генотипов), благоприятных для рудообразования (седиментационного и седиментационно-диагенетического типов);
- выделение литофаций и литотипов, благоприятных для локализации эпигенетических рудных тел, выделение пород-коллекторов;
- установление пространственного распределения геохимических и других барьеров.

Для динамической подмодели:
- прогноз реализуемости благоприятных литофаций и фаций (для рудных месторождений);
- прогноз реализуемости коллекторов (для месторождений углеводородов).

По направлению подземного строительства для статической подмодели – установление пространственного распределения физико-механических, барьерных свойств элементов горного массива.

Для динамической и других подмоделей предлагается учет иных факторов, насле-

<table>
<thead>
<tr>
<th>Статическая подмодель</th>
<th>Возможности выделения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Динамическая подмодель (открытые системы, взаимодействие квазиоткрытых и открытых систем)</td>
<td>Возможности прогнозирования</td>
</tr>
<tr>
<td>Подмодель взаимодействия системы с другими системами (все квазиоткрытые)</td>
<td>Возможности прогнозирования реализуемости коллекторов</td>
</tr>
</tbody>
</table>

Рис. 2. Структура и функциональные возможности структурно-литологической модели
щихся технических и экологических аспектов функционирования объектов техногенно-геологических систем соответствующих типов.

Для направления охраны геологической среды возможности статической подмодели включают:
- установление пространственного распределения физико-механических, барьерных свойств геологической среды;
- для подмодели взаимодействия модели системы с другими системами:
- прогнозирование динамики распространения загрязнения.

Кроме этого, нужно учитывать, что ЦСЛМ представляет матричную основу для разработки моделей подчиненного ранга динамической направленности, характеризующей процесс тепломассопереноса – гидрогеологические, теплофизические, наложенных процессов.

Принципы разработки комплексных моделей

Комплексная модель, будучи целевой, должна отражать, с одной стороны, определенный предметный интерес: ресурсный, горный (эксплуатационный, строительный), экологический (хранение недр, восстановление геологической среды или их сочетания); с другой – необходимые для результативного осуществления программных действий аспекты, представляемые соответствующими подчиненными моделями (см. выше). В методологическом плане объединение подчиненных моделей является динамической составляющей взаимодействия систем или элементов их внутренней структуры. В плане теоретических моделей геологических объектов различного типа процедура объединения моделей отражает различные взаимосвязи, взаимодействия, процессы: например, взаимосвязи между литологическими характеристиками и барьерными, физико-механическими или фильтрационными свойствами и т.д.; вещественного состава и гидрохимических характеристик; взаимодействия – вода-порода, газ-вода, между твердыми фазами (деформации, диапиризм и др.); изменения под влиянием термодинамических условий; наложенные процессы и др. Отметим, что ряд подчиненных моделей, используемых для построения комплексных целевых моделей, может быть очень широким. Их функциональная роль в комплексной модели устанавливается, исходя из их предметности.

К примеру, в составе теоретической комплексной эколого-горно-геологической модели оценки геологической среды для размещения объектов изоляции радиоактивных отходов (хранители геологического типа) принимают участие семь основных предметных моделей: структурно-тектоническая, литологическая (или петро графическая), геомеханическая и инженерно-геологическая, геохимическая, теплофизическая, гидрогеологическая (гидродинамическая, гидрохимическая) и гидрогеологическая миграционная [8].

Объединение подчиненных моделей (в сравнении с их разработкой) представляет собой уже нетрадиционную задачу из-за существенного возрастания количества элементов, факторов и событий (сценариев).

От комплексной модели – к ЦЭС

Таким образом, комплексная цифровая модель геологического объекта – это набор объемных цифровых моделей отдельных его свойств: литологических, гидрогеологических, инженерно-геологических и т.д. Как правило, целевое назначение такой модели состоит в классификации по заданным классификационным схемам отдельных частей объекта, т.е. выделение в объеме геологического объекта тел с заданными свойствами. В большинстве случаев решение задач классификации производится автоматически специальными компьютерными программами визуализации модели и не требует вмешательства эксперта. Однако в ряде случаев такое решение неоднозначно и требует содержательной интерпретации (экспертизы) для выработки окончательного решения. Экспертиза состоит в содержательном анализе полученных результатов, проверке их на непротиворечивость имеющихся теоретическими представлениями данной предметной области. часто неформальным и даже неформализуемым и может привести к осознанию необходимости доопределения модели на уровне исходных данных и повторения отдельных стадий или полного цикла процесса моделирования.
Кроме того, целевое решение может представлять собой продукт качественного экспертного анализа числовых результатов, полученных из подчиненных предметных моделей комплексной модели геологического объекта. Качественный экспертный анализ может быть реализован в виде комплекса процедур (логико-математического аппарата получения решений) обработки базы экспертных правил (базы знаний). По определению такая система, состоящая из базы данных объекта (включающей и все подчиненные цифровые модели), базы знаний (логических экспертных правил для неформального анализа результатов подчиненных моделей) и математического аппарата обработки базы знаний (получения целевых решений), является ЭС, в нашем случае ЦЭС геологического объекта.

Разработка ЦЭС на основе комплексных моделей различных направлений имеет целью выделение в объемах геологического объекта элементов, характеризующихся определенными заданными свойствами (напри- мере полезных ископаемых, физико-механические характеристики, барьерные свойства и т. д.), и процессов, обусловливающих изменения различных функциональных свойств геологической среды (состояние подземных вод, геомеханические, структурные, вещественные, термодинамические и иные ее характеристики). В целом, обозначенные возможности оценивают информационное обеспечение решения ресурсных, строительных и экологических проблем в области многоцелевого использования и охраны недр.

Типизация и содержание ЦЭС

В общем, можно выделить три концептуальных направления ЦЭС (соответственно направлением обращения с геологической средой):
- использование сырьевых ресурсов;
- подземное строительство (два подчиненных направления – шахтное строительство и использование в целях, не связанных с добычей полезных ископаемых – строительство сооружений разного назначения);
- охрана геологической среды (оказывает геоэкологические проблемы и сохранение ресурсной базы или предупреждение негативных изменений в геологической среде и восстановление механических, гео-
химических и других нарушений, гидрогеологического режима и т. д.).

Исходя из того, что в основе ЦЭС лежит комплексная (тоже целевая) модель, последняя может состояться несколькими предметными моделями. Общий ряд последних рассматривает функциональные характеристики геологического объекта: структуру, вещественный состав, гидрогеологические, горнотехнические, инженерно-геологические параметры, экологический (с рядом подчиненных) аспект, а также смежные аспекты – технологические, экономические, вплоть до маркетингового. Комплекс моделей ЦЭС конкретного объекта определяется предметом (системой мероприятий) обращения с этим объектом.

Для различных направлений и отдельных типов ЭС присущи разные комплексы моделей. Согласно назначению систем можно выделить такие их направления: ресурсно-геологическое, ресурсно-горногеологическое, горногеологическое, эколого-горногеологическое, эколого-геологическое.

Два первых направления касаются ЭС, предназначенных для обеспечения исследований и работ, которые направлены на развитие сырьевой базы полезных ископаемых (с соответствующей ролью горной составляющей), третье – горногеологическое – связано с подземным строительством. Эколого-горногеологическое и эколого-геологическое направления предназначены для создания ЦЭС, связанных с охраной геологической среды: первое – для территорий деятельности горнодобывающих предприятий; второе – для территорий других нарушений геологической среды (разного рода загрязнения и т. д.).

В пределах намеченных направлений комплексы (наборы) моделей (и их содержание) также отличаются в зависимости от целевого назначения ЭС.

Примеры разработки целевых комплексных моделей, представляющих основу для создания ЦЭС

На сегодняшний день нами разработано несколько ЦСЛМ. По направлению использования сырьевых ресурсов демонстрируется ЦСЛМ для типового российского мес-
торождения ильменита (Злобичское россыпное месторождение) и золотоносных россыпей (Канев-Звенигородская перспективная площадь золотоносных россыпей и золоторудное месторождение Балка Широкая). По направлению охраны геологической среды показаны примеры двух геологических объектов деятельности горнодобывающих предприятий соляной промышленности с развитием экологической катастрофы*, для которых начата разработка комплексных моделей (Солотвинское месторождение каменной соли и Калушский горно-промышленный район). Описания моделей приведены в рядах наших публикаций [6, 11 и др.].

Злобичское россыпное месторождение ильменита. Разработана ЦСЛМ месторождения, описание которой приведено в некоторых наших работах [6, 11 и др.].

Создание этой модели обеспечило решение следующих задач:
- установление пространственного распространения рудных тел, прослеживание их связи с литофациями и фациями, генотипами и т. д.;
- автоматический подсчет запасов по установленному бортовому содержанию рудного компонента;
- отработка комплексной методики прогнозирования месторождений данного типа.

Кроме этого, модель Злобичского месторождения обеспечила основу решения части технологических задач посредством установления пространственного распределения гранулометрических параметров и глинности, а также определение условий селективной разработки месторождения (задание смежной технологической модели). Канев-Звенигородская перспективная площадь золотоносных россыпей. Создание ЦСЛМ этого геологического объекта обеспечило решение следующих задач:
- установление закономерностей факциональной, литофациальной, палеорельефной приуроченности оруденения;
- выделение перспективных участков.

Золоторудное месторождение Балка Широкая. В пределах объекта рассмотрены два формационных подразделения: кора выветривания и перекрывающая осадочная толща. Детальное описание модели приведено в наших публикациях [6, 11 и др.]. Разработка модели обеспечила решение следующих задач:
- установление пространственного распределения золота, серебра и меди относительно зональности коры выветривания;
- установление закономерностей факциональной и литофациальной приуроченности оруденения в перекрывающей осадочной толще;
- выделение перспективных участков.

Приведенные примеры свидетельствуют о том, что для рассмотренных типов месторождений и рудопроявлений структурнолитологическое моделирование является основой самодостаточной составляющей будущих ЦЭС, которые предназначены для обеспечения решения промблахущей части задач, связанных со всеми этапами исследований и работ, направленных на освоение этих месторождений. Экологический (технико-экологический) аспект, очевидно, будет выступать как определяющий на завершающем этапе рекультивации территории горнодобывающего предприятия.

Далее приведены примеры подготовки ЦЭС для территории деятельности горнодобывающих предприятий солиной промышленности в связи с экологическими проблемами.

В основе методологии построения целей и задач ЭС и целевого моделирования для территории деятельности горнодобывающих предприятий соляной промышленности в связи с экологическими проблемами лежит определение нарушений биосферы при техногенном вмешательстве в соляные массивы (см. таблицу).

Рассмотрены два производственно-геологических объекта: Солотвинское месторождение каменной соли и Калушский горно-промышленный район.

Солотвинское месторождение каменной соли. Развитие экологической катастрофы здесь связано с территорией деятельности Государственного предприятия (ГП) "Солотвинский солерудник". В соответствии с решением Государственной комиссии по вопросам техногенно-экологической

* Экологическая катастрофа – комплекс существенных негативных нарушений природной окружающей среды.
Нарушение биосферы (геологической и окружающей среды) в результате техногенного вмешательства в соляные массивы

<table>
<thead>
<tr>
<th>Тип влияния (вид работ)</th>
<th>Нарушения геологической среды</th>
<th>Нарушения поверхностной окружающей среды</th>
<th>Влияние отвалов и хвостохранилищ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Механические</td>
<td>Геохимические</td>
<td>Гидрогеологические</td>
</tr>
<tr>
<td>1. Эксплуатация соляных ресурсов</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Шахты</td>
<td>Каменная соль Калийно-магниевая соль</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Правылы, оседания земной поверхности, деформации ландшафтов, экологически дестабилизованный рельеф</td>
<td>Засоление геологической среды (пород, подземных и поверхностных вод, грунтов)</td>
<td>Нарушение гидрогеологических режимов смежных водоносных горизонтов</td>
<td>Выбросы соляной пыли, рассолов</td>
</tr>
<tr>
<td>1.2. Кварьы</td>
<td>Правылы, оседания земной поверхности, деформации ландшафтов</td>
<td>Локальное нарушение гидрогеологических режимов, затопление территории</td>
<td></td>
</tr>
<tr>
<td>1.3. Подземное выщелачивание</td>
<td>Правылы, оседания земной поверхности, деформации ландшафтов, деформации рельефа</td>
<td>Нарушение гидрогеологических режимов смежных водоносных горизонтов</td>
<td>Отсутствует</td>
</tr>
</tbody>
</table>

| Карет |

2. Строительство и эксплуатация подземных хранилищ

| 2.1. Емкости подземного выщелачивания | То же, прорыв продукта (отходов), сохраняющегося в геологической среде | Загрязнение геологической среды | То же | Сброс рассолов | Отсутствует |
| 2.2. Использование отработанных шахтных выработок | | | | |

| Карет |

3. Неумышленное вторжение

| 3.1. Разрущение соляной толщи | Локальный разрыв соляной толщи | Смещение геохимических специализаций | Локальная гидравлическая связь водоносных
горизонтов | |
| 3.2. Нарушение природной защелкиности (при разработке надсоляных защитных горизонтов, при эксплуатации месторождений нефти, газа и др.) | Разрыв соляной толщи | Засоление (в зависимости от масштаба нарушения соляной толщи) | Нарушение гидрогеологических режимов смежных водоносных
горизонтов | |

| Карет |

ISSN 0367–4290. Геол. журн. 2012. № 2
В настоящее время завершена разработка ЦСЛМ, обеспечивающая:
– установление пространственного распределения физико-механических и барьерных свойств слоя солевого массива (предоставление исходных данных для геомеханического и гидрогеологического моделирования);
– установление пространственного распределения петрографических и геолого-промышленных типов каменной соли (для поиска участка размещения подземного отделения Украинской аграрногеолого-
ической больницы, возможно – участка для размещения рассоловопромысла и др.);
– уточнение рельефа поверхности солевых массивов (в связи со всеми вышеука-
занными заданиями).
Гидрогеологическая и геомеханическо-
инженерно-геологическая модели предназначаются для решения соответствующих предметных вопросов, касающихся меха-
низма развития и прогноза опасных геоло-
гических явлений.
Разработка комплексной эколого-горно-
геологической модели должна обеспе-
чить следующее:
– комплексную оценку состояния соля-
ного массива;
– составление карты прогноза развития опасных геодинамических процессов (про-
валов, оседаний, развитие карста);
– разработку схемы мониторинга (гео-
механического, гидрогеологического);
– обоснование мероприятий по ограни-
чению и ликвидации последствий опасных геологических процессов;
– обоснование выбора перспективного участка для размещения подземного отделе-
ления Украинской аграрногеологической больнице и других смежных объектов.
В связи с проработкой альтернативного варианта размещения аграрногеологической больницы, по предложению Закарпатской облгосадминистрации нашим коллективом (Л. П. Боссевская, Д. П. Хрушев, Ю. В. Кир-
пач) была разработана СЛМ (на первом эта-
пе – аналоговая) Тереблянской соляноку-
польной структуры. Полученная модель свидетельствует о более низком уровне перспективности этой структуры по сравне-
нию с Солотвинской [9]. Тем не менее с уче-
том этой оценки как определяющейся по ре-
езультатам моделирования уже построена прогнозная карта с выделением потенци-
ально перспективных участков для поста-
новки геологоразведочных работ.
Территория Калушского горно-промышлен-
ленного района. В настоящее время, в соответствии с Указом Президента Украины от 10.02.2010 г. № 145/2010 "Об объявлении территорий г. Калуш и сел Кропивник и Сив-
ка Калушская Калушского района Ивано-
Франковской области зоной чрезвычайной экологической ситуации", разрабатывается межведомственная программа комплекс-
ного эколого-геологического мониторинга на территории Калушского горно-промышлен-
ленного района. По нашему предложению в эту программу включены два раздела: раз-
работка структурно-литологической и гео-
механической моделей (для территории де-
ятельности горнодобывающих предприятий Калушской группы месторождений калий-
но-магниевых солей). При объединении с гидрогеологической моделью и некоторы-
ми другими направлениями исследований они должны составлять комплексную эколо-
го-горно-геологическую модель.
Задачи этих моделей следующие.
Структурно-литологическая модель:
– пространственное распределение ли-
тофашиальных комплексов;
– характеристика их морфологии, ве-
щественного состава, структурно-текстур-
ных признаков, выделение литотипов.
Модель предоставляет исходные данные для разработки гидрогеологического и гео-
механическо-инженерно-геологического моделирования с учетом двух направлений: ресурсного и экологического (обеспечение базы для диагностики и прогнозирования опасных геологических явлений – карста, оседаний, провалов, оползней).
Гидрогеологическая модель:
– построение гидродинамических схем с отображением источников питания и об-
ластей разгрузки, прогноз изменений режима по возможным сценариям;
– построение гидрохимических схем с отображением условий формирования и из-
менений основных параметров, прогноз из-
менений гидрохимических параметров по возможным сценариям с установлением распространения солевого и других видов загрязнений водоносных горизонтов.
Геомеханическая инженерно-геологическая модель:
- моделирование несущей способности и долговременной устойчивости техногенных и геологических элементов техногенно-геологической системы территории;
- моделирование деформаций дневной поверхности и основных элементов техногенно-геологической системы;
- прогноз проявлений опасных геологических процессов (оседаний, превалов, оползней).

Особенностью разработки указанных моделей является необходимость учета складчато-блокового строения района. Поэтому построения проводятся по выделенным тектоническим участкам. Это, в свою очередь, определяет ведущую роль структурно-литологической модели.

Комплексная эколого-горно-геологическая модель должна отображать все информационные и прогнозные данные рассмотренных моделей, а именно:
- состояние и прогноз опасных геологических, в том числе геодинамических явлений;
- состояние и прогноз распространения солевого и сопутствующего загрязнения водных горизонтов и геологической среды, а также поверхностных вод (дополнительной задачей является также решение вопроса обращения с пунктом локализации токсических отходов – гексахлорцена и др.).

Рис. 3. Принципиальная схема ЦЭС геологической проблемы
Комплексная эколого-горно-геологическая модель составляется основу для подгтовки программных управленческих решений по двум стратегическим направлениям:
- обращение с деградированными территориями площадей деятельности горно-добывающих предприятий (ликвидация и ограничение влияния последствий проявления негативных геологических процессов);
- обращение с оставшейся частью сырьевой базы месторождения (каллино-магниевые соли, рассолы).

Заключение

ЦЭС должна обеспечить решение целевой задачи в случае, когда количественный компьютерный анализ комплексной модели не приводит к однозначным результатам, а получение оптимального решения целевой проблемы возможно только при экспертном анализе результатов, полученных на частных подмоделях комплексной модели. В контексте геологических задач схема классической ЦЭС (рис. 1) конкретизируется (рис. 3).

Авторы видят свою дальнейшую задачу в разработке комплексных моделей геологических объектов, баз знаний, содержащих наборы экспертных правил для интерпретации частных результатов комплексных моделей конкретных объектов, математического аппарата для обработки баз знаний и в конечном счете — в разработке ЦЭС.

Ин-т геол. наук НАН Украины, Статья поступила Киев 06.03.12
E-mail: Khrushchov@hotmail.com

ДП "НИИ нефтегазовой промышленности", Вишневое, Киевская область E-mail: lobasov_ai@rambler.ru

УкрНИИсоль, Артемовск, Донецкая область E-mail: bosslara@gmail.com