ДОСЛІДНИЦЬКІ ТА ОГЛЯДОВІ СТАТТІ

RESEARCH AND REVIEW PAPERS

https://doi.org/10.30836/igs.1025-6814.2025.1.321001 УДК 550.93

E-mail: stepaniuk@nas.gov.ua, https://orcid.org/0000-0001-5591-5169; lshumlyanskyy@yahoo.com, https://urcid.org/0000-0002-6775-4419; tetyana.dovbush1@gmail.com, https://orcid.org/0000-0002-3512-3313; vysotsky@nas.gov.ua, https://orcid.org/0000-0002-3542-4685; ndbudzyn@cyf-kr.edu, https://orcid.org/0000-0002-1186-0888; slama@gli.cas.cz, https://orcid.org/0000-0002-1386-4196

*Corresponding author / Автор для кореспонденції: L.M. Stepanyuk, stepaniuk@nas.gov.ua

Received / Надійшла до редакції: 17.01.2025

Received in revised form / Надійшла у ревізованій формі: 20.02.2025

Accepted / Прийнята: 10.03.2025

Keywords: U-Pb age, monazite, enderbite, Dniester-Buoh region.

Ключові слова: U-Pb вік, монацит, ендербіт, Дністровсько-Бузький район.

© Видавець Інститут геологічних наук НАН України, 2025. Стаття опублікована за умовами відкритого доступу за ліцензією CC BY-NC-ND (https://creativecommons.org/ licenses/by-nc-nd/4.0/)

© Publisher Institute of Geological Sciences of the National Academy of Sciences of Ukraine, 2025. This is an Open Access article under the CC BY-NC-ND license (https:// creativecommons.org/licenses/by-ncnd/4.0/) Молоді пізньопалеопротерозойські (1800–1700 млн років) віки монацитів та цирконів у породах Дністровсько-Бузького району Українського щита

Л.М. Степанюк^{1*}, Л.В. Шумлянський¹⁻³, Бартош Будзинь², Їржі Слама⁴, Т.І. Довбуш¹, О.Б. Висоцький¹

¹Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України, Київ, Україна; ²Інститут геологічних наук Польської академії наук, Краків, Польща; ³Університет Кьортіна, Перт, Австралія; ⁴Інститут геології Чеської академії наук, Прага, Чехія

The Young Late Palaeoproterozoic (1800–1700 MA) ages of monazite and zircon in rocks of the Dniester-Bouh region of the Ukrainian Shield

L.M. Stepanyuk^{1*}, L.V. Shumlyanskyy¹⁻³, Bartosz Budzyń², Jiří Sláma⁴, T.I. Dovbush¹, O.B. Vysotskyy¹

¹M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kyiv, Ukraine; ²Institute of Geological Sciences, the Polish Academy of Sciences, Research Centre in Krakow, Krakow, Poland; ³Curtin University, Pert, Australia; ⁴Institute of Geology, the Czech Academy of Sciences, Prague, Czech Republic

The results of U-Pb isotope dating (TIMS and LA-ICP MS-method) of monazite from pyroxene-bearing granitoids of the Dniester-Bouh region of the Ukrainian Shield are discussed in the paper. The results of the TIMS dating of the multigrain fractions do not correspond to the Wetherill model. The dating of the individual grains by applying the LA-ICP-MS method yielded both ancient (over 2.0 Ga) and young (1.7–1.8 Ga) ages. The young dates may be caused by either the gradual cooling of rocks after high-grade metamorphism, or, more likely, by the reheating caused by the formation of a large igneous province at 1.80–1.75 Ga, represented by numerous mafic dyke swarms, two gabbro-anorthosite-rapakivi granite massifs in the Volyn and Inhul regions of the Ukrainian Shield (Korosten and Korsun-Novomyrhorod, respectively) and ultramafic, alkaline and felsic rocks in the Azov region. Tectono-magmatic activation, in addition to reheating, was accompanied by the penetration of fluids in zones of tectonic deformations. This could have caused the rejuvenation of the age of monazite and zircon crystals. The irregularity of the fluid penetration can explain the presence of both old and young monazite and zircon crystals in a single sample, and the absence of young crystals of these minerals in rocks collected in other parts of the Ukrainian Shield. It is possible that both factors had a combined effect.

Цитування: Степанюк Л.М., Шумлянський Л.В., Будзинь Бартош, Слама Їржі, Довбуш Т.І., Висоцький О.Б. Молоді пізньопалеопротерозойські (1800–1700 млн років) віки монацитів та цирконів у породах Дністровсько-Бузького району Українського щита. *Геологічний журнал.* 2025. № 1 (390). С. 12–24. https://doi.org/10.30836/igs.1025-6814.2025.1.321001

C i t a t i o n : Stepanyuk L.M., Shumlyanskyy L.V., Budzyń Bartosz, Sláma Jiří, Dovbush T.I., Vysotskyy O.B. 2025. The Young Late Paleoproterozoic (1800–1700 MA) ages of monazite and zircon in rocks of the Dniester-Bouh region of the Ukrainian Shield. *Geologičnij žurnal*, 1 (390): 12–24. https://doi.org/10.30836/igs.1025-6814.2025.1.321001

Вступ

Монацит разом із цирконом належить до мінералів-геохронометрів, які несуть інформацію про найбільш високотемпературні етапи розвитку магматичних і метаморфічних порід. Згідно із даними (Cherniak et al., 2004), температура закриття U-Pb ізотопної системи в монацитах перебільшує 900 °С, що вище температури магматичної кристалізації гранітоїдів або ж температури метаморфізму, яка може досягатися в звичайних корових умовах. Отже, вік монациту має відображати найбільш високотемпературний етап еволюції кислих магматичних та метаморфічних порід і має наближатися до віку циркону. Монацит також значною мірою, ніж циркон, може зазнавати змін під час флюїдного впливу (Broska, Siman, 1998; Seydoux-Guillaume et al., 2012), що робить його чутливим індикатором метасоматичних процесів.

Деякіздослідників (Spear, Pyle, 2002; Williams et al. 2007; Taylor et al., 2016; Grand'Homme et al., 2016) вказують на те, що за тривалого перебування гірської породи в умовах гранулітової фації метаморфізму можлива кристалізація декількох генерацій монациту та/або перекристалізація за механізмом розчинення-перевідкладення, які будуть відображати різні події. Також не виключеною є часткова (або й повна) втрата радіогенного свинцю, як це нерідко спостерігається в цирконі, незважаючи на високу температуру закриття ізотопної системи. Зокрема, циркони із високометаморфізованих породних асоціацій Середнього Побужжя характеризуються значним діапазоном віків кристалізації, який може опускатися до близько 1800 млн років. Окрім того, в результаті датування мультизернових наважок монациту із ендербіту, розкритого кар'єром Козачий Яр, отримано числові значення віку за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb, які варіюють від 1894 до 1794 млн років (Степанюк, 2024).

Нами було досліджено монацити з гранітоїдів Побужжя з метою визначення часу їх формування. В ході дослідження було виявлено, що монацити з цих порід характеризуються широкими варіаціями позірних віків кристалізації. Обговоренню причин цих варіацій і присвячена дана стаття.

Об'єкти і методи дослідження

3 метою визначення часу формування гранітоїдів Побужжя уран-свинцевим ізотопним методом (TIMS) були датовані мультизернові наважки кристалів монациту із ендербіту (проба ВП-10-1), розкритого Сабарівським кар'єром, та із біотит-гранатового гнейсу (віннициту, за (Касьяненко, 2016)) (проба Л-6), поширеного у південному борту Літинського кар'єру. В зв'язку з тим, що отримані результати уран-свинцевого ізотопного датування не піддавалися інтерпретації в рамках моделі Аренса-Везеріла, кристали монациту із зазначених вище проб додатково датували методом LA-ICP-MS. Цим же методом були датовані кристали монациту із антипертитового ендербіту (проба ВП-1), розкритого Тиврівським кар'єром (рис. 1).

Рис. 1. Супутникова карта району м. Вінниця (Верхнє Побужжя) з місцями відбору радіогеохронологічних проб Fig. 1. Satellite map of the district of Vinnytsia (Upper Pobuzhzhia) with locations of radiogeochronological sampling

Методом TIMS мультизернові наважки монацитів датували у відділі радіогеохронології Інституту геохімії, мінералогії та рудоутворення (IГМР) ім. М.П. Семененка НАН України. Для ізотопного датування вручну під бінокуляром були відібрані мультизернові наважки кристалів монациту, які після того скочуванням по нахиленій площині були розділені за розміром. Методика хімічної підготовки, за якою готувалися зразки монацитів для мас-спектрометричного аналізу, описана в роботах (Геохронологическая..., 1989; Krough, 1973). Для визначення вмісту урану і свинцю використали змішаний ²³⁵U+²⁰⁶Pb трасер.

Ізотопні дослідження свинцю та урану виконані на 8-колекторному мас-спектрометрі МІ-1201 АТ у мультиколекторному статичному режимі; математична обробка експериментальних даних – за програмами PbDat i ISOPLOT (Ludwig, 1989, 1990). Похибки визначення віку наведені при 2о. Для контролю метрологічних характеристик методу використали стандарт циркону ІГМР-1 (Бартницкий и др., 1995).

Для датування методом LA-ICP-MS зерна монациту були вмонтовані в епоксидну смолу. Поліровані зерна були попередньо досліджені за допомогою електронного мікрозонда SuperProbe JXA-8230, оснащеного п'ятьма спектрометрами дисперсії довжин хвиль у Лабораторії критичних елементів АGH-КGHM Краківського університету AGH (Краків, Польща). Вимірювання ізотопів U-Th-Pb у монациті проводили за допомогою інструмента ICP-MS Thermo Scientific Element 2, поєднаного з ексимерним лазером ArF 193 нм (лазер Teledyne Cetac Analyte Excite) в Інституті геології Чеської академії наук. Аналітична процедура відповідає процедурі, описаній у роботі (Budzyń et al., 2022). Лазер працював з частотою 5 Гц, інтенсивністю потоку світла 1,7 Дж/см² і розміром аналітичної плями 13 мкм.

Геологічна ситуація

Дністровсько-Бузький район (мегаблок, за (Щербак и др., 2005, 2008; Щербаков, 2005)) є складовою частиною Українського щита (УЩ). Він належить до типових грануліто-гнейсових областей і складений переважно архейськими породами (Гранулитовая..., 1985; Метаморфизм..., 1982; Курепин, 1991; Кривдік та ін., 2011). Основним породним фоном є чарнокітоїди (ендербіти, чарнокіти), бердичівські і побузькі граніти та мігматити палеопротерозойського (переважно 2,1 млрд років) віку (Щербак и др., 2008), серед яких у вигляді залишків трапляються метаморфізовані в умовах гранулітової фації гнейси і кристалічні сланці основного складу з підпорядкованими прошарками кальцифірів, залізистих і безрудних кварцитів, виокремлені в дністровсько-бузьку та бузьку серії (Стратиграфические..., 1985). На Верхньому Побужжі, який є районом поширення ендербітів і результати дослідження яких є предметом даної роботи, ендербіти складають ряд куполоподібних структур (Рябенко, 1970).

Результати та їхнє обговорення

Ендербіт (проба ВП-10-1) складає в Сабарівському кар'єрі пластоподібне тіло потужністю близько 2 м, що з одного краю контактує з карбонатними породами (пачка, близько 10 м, представлена мармурами і кальцифірами), з іншого – з так званими вінницитами (гіперстен-гранатовими лейкогранітами). Детальний опис ендербіту наведено в роботі (Степанюк, 2024), тому обмежимося скороченою характеристикою цієї породи.

Ендербіт – зеленкувато-сіра порода. Мікроструктура рівномірно-, дрібно-середньозерниста, з середнім розміром зерен 0,8–2,0 мм, окремі зерна плагіоклазу сягають 4 мм, гіпідіоморфнозерниста. Дрібніші зерна кварцу часто знаходяться в інтерстиціях крупніших кристалів плагіоклазу. Слабо проявляються елементи катакластичної структури у вигляді хвилястого, зрідка хвилясто-блочного погасання зерен маси та тектонобластичної структури – у вигляді слабкої грануляції на границях зерен.

Мінеральний склад (% об.): плагіоклаз – 65–70, кварц – 20–25, гіперстен – 3–5, біотит – 2–4, калієвий польовий шпат – близько 4. Акцесорні мінерали – циркон, апатит, монацит.

Кристали монациту світло-жовті, прозорі, пампушкоподібні, їх контури заокруглені. Поверхня більшості зерен рівна блискуча, трапляються окремі грані і ребра. Відмічається зростання з польовими шпатами і кварцом. Після обробки монациту слабким розчином соляної кислоти лише незначна частина зерен покрилася тонкими білими кірочками.

Вік ендербіту визначали U-Pb ізотопним методом за мультизерновими наважками розмірних фракцій світло-жовтих прозорих пампушкоподібних кристалів монациту. Аналітичні дані наведено в табл. 1 (аналізи 1–4). Через значні розходження в числових значеннях віку, розрахованих за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb (понад 25 млн років), які значущо перевищують аналітичну похибку, із фракцій 1–4 ще раз відібрали мультизернові наважки 1а–4а і визначили в них вміст урану, свинцю та ізотопний склад свинцю (див. табл. 1, 1а–4а).

За верхнім і нижнім перетинами дискордії, розрахованої за наведеними в табл. 1 даними (аналізи 1–4), отримано вік (2023 ± 42) та (747 ± 673) млн років, відповідно. Середньозважене значення віку за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb становить (2004 ± 28) млн років. Значення віку, отримане за верхнім і нижнім перетинами дискордії, розрахованої за всіма даними табл. 1, становить (2258 ± 1726) та (1895 ± 792) млн років, відповідно. Середньозважене значення віку за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb – (2000 ± 11) млн років (рис. 2). **Таблиця 1.** Вміст урану, свинцю та ізотопний склад свинцю в монацитах із ендербіту, проба ВП-10-1, Сабарівський кар'єр (Степанюк, 2024)

Table 1. Concentrations of Th and U, and isotope composition of Pb in monazite from enderbite, sample VP-10-1, Sabariv open pit (Stepanyuk, 2024)

	Concentr	ation, ppm		Ŀ	sotope ratio	S		lso	otope age, l	Ма	
fraction	U	Pb	²⁰⁶ Pb ²⁰⁴ Pb	²⁰⁶ Pb ²⁰⁷ Pb	²⁰⁶ Pb ²⁰⁸ Pb	²⁰⁶ Pb, ²³⁸ U	²⁰⁷ Pb, ²³⁵ U	²⁰⁶ Pb, ²³⁸ U	²⁰⁷ Pb, ²³⁵ U	²⁰⁷ Pb, ²⁰⁶ PB,	D, %
1	1465	7532	6135	7,9504	0,065449	0,35999	6,1418	1982	1996	2010,8	-1,4
2	1180	5157	6530	8,0438	0,073651	0,34137	5,7613	1893	1941	1991,6	-4,9
3	865	3633	5155	7,9026	0,081400	0,35962	6,1529	1980	1998	2015,8	-1,8
4	907	3840	5875	7,9879	0,079434	0,35442	6,0131	1956	1978	2000,9	-2,3
1a	1234	5057	11280	8,1274	0,083363	0,35935	6,0439	1979	1982	1985,4	-0,3
2a	1090	4385	18020	8,1057	0,084104	0,35577	6,0215	1962	1979	1996,6	-1,7
3a	1270	5214	4085	7,9859	0,082939	0,35724	6,0135	1969	1978	1987,0	-0,9
4a	1157	4948	15670	8,1520	0,078407	0,35442	5,9590	1956	1970	1984,8	-1,5

Примітка. Поправка на звичайний свинець уведена за Стейсі та Крамерсом на вік 2000 млн років: 1–4 – розмірні фракції світло-жовтих прозорих пампушкоподібних кристалів; 1а–4а – ті ж самі розмірні фракції, повторний аналіз. Рb, – свинець радіогенний. D – дискордантність.

Рис. 2. U-Pb діаграма з конкордією для мультизернових наважок монациту із ендербіту, проба ВП-10-1, Сабарівський кар'єр: 1 – фігуративні точки аналізів 1–4 (див. табл. 1); 2 – аналізів 1а–4а. Т – вік, розрахований за верхнім перетином дискордії (пунктирна лінія) з конкордією ((2258 ± 1726) млн років); t – за нижнім перетином ((1895 ± 792) млн років). Суцільна лінія – лінія регресії, розрахована за умови, що вона виходить з початку координат

Fig. 2. U-Pb isotope plot with concordia for multigrain fractions of monazite from enderbite, sample VP-10-1, Sabariv open pit: 1 - analytical spots 1–4 (see Table 1); 2 - analytical spots 1a–4a. T – upper intercept age (dashed line, (2258 ± 1726) Ma)), t - lower intercept age ((1895 ± 792) Ma). The solid line is a regression line anchored to the lower intercept at 0 Ma

Отже, чотири додаткові аналізи не дозволили суттєво уточнити вік монациту. Значні розходження в числових значеннях віку як за відношенням ²⁰⁶Pb/²³⁸U, так і за відношенням ²⁰⁷Pb/²⁰⁶Pb, які значущо перевищують аналітичну похибку, найімовірніше, враховуючи, що монацити представлені переважно однорідними кристалами, зумовлені досить тривалим (понад 30 млн років) часом протікання структурно-метаморфічного перетворення суперкрустальних порід та формування ендербіту. Тому для з'ясування часу кристалізації монациту використали метод LA-ICP-MS; аналітичні результати наведено в табл. 2 та на рис. 3.

Дослідницькі та оглядові статті | Research and Review Papers

Як видно з табл. 2, вік за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb варіює від (1727 ± 21) до (2076 ± 18) млн років при майже конкордантних значеннях віку. На діаграмі з конкордією (рис. 3, а) фігуративні точки свинець-уранових відношень формують поле, яке можна розбити на три ділянки. Перша ділянка характеризує найдавніші кристали монациту віком (2053 ± 14) млн років (рис. 3, b). Дещо молодшими виявилися кристали монациту другої групи – (1951,7 ± 7,9) млн років (рис. 3, с). Для двох кристалів із 35 проаналізованих отримано дещо молодші значення ²⁰⁷Pb/²⁰⁶Pb віку: (1727 ± 21) млн років за дискордантності 1,9 % та (1730 ± 19) млн років за дискордантності 3,5 % (див. табл. 2, аналізи 1 та 3, відповідно).

	ppm	D	163	383	241	220	322	290	555	392	417	444	437	165	163	506	783	305	724	432	222	208	502	322	774	556	765	403	606	410	685	667	336	676	438	602	618
	trations,	Th	86600	43700	64100	65000	66260	96600	64000	75600	158100	128700	66200	92300	111300	181400	72600	66500	82900	56800	88000	88100	75400	94500	87300	105900	98300	136900	70100	88100	64100	66500	76400	66200	72600	72100	67400
	Concen	Pb	1033	619	831	773	983	1355	947	1106	2374 `	1899	2492 1	1354	1580	2565	1069	987	1224	839	1283	1289	1119	1397	1208	1536 `	1458	2048 、	1032	1231	926	970	979	982	1054	1074	1007
		sc		0.3	2.4	3.5	-2.1	0.4	1.5	0.8	2.5	0.7	1.5	0.2	0.2	1.0	2.7	1.6	1.4	0.2	1.4	1.1	1.2	0.7	2.8	.0.1	3.0	0.5	1.6	0.2	0.5	0.5	7.0). 6	1.2	0.5	. 8.0
		2σ di	21	16	17	19	16	15	15	- 16	- 11	- 11	- 16	20	19	- 17	18	20	19	- 16	20	19	- 11	- 18	18	18	16	- 17	18	21	17	17	24	16	18	- 17	18
		7Pb 6Pb	727	954	388	730	007	952	041	020	202	033	J54	348) 28	945	057	019) 53	J62	053	061	090	053	954	036	067	090	042	938	008	025	983	043	024	050	076
		a 30	4	5	4 18	с Т	6 2	5	6 2	6 2(6 2(7 20	7 2(8 2(7 2(6 19	0 2	0 2(0 2(8 2(7 20	9 2	8 2(9 2(7 19	9 2(0 2	8 2(9 2(8	9 2(8 2(3	9 2(9 2(1 2(9 2(
	es, Ma	2 7	6 1	8	2	1	1	5	7 1	1 1	3	9	1	1	1	5	9 2	5 2	6 2	5	6	5	5	7 1	2	6 1	8 2	6	4	4	6	5 T	8 2	7	7 1	7 2	0
	tope ag	208 p	161	185	174	160	195	186	197	196	198	196	20(196	185	189	195	193	197	197	194	195	197	197	185	193	197	199	196	187	192	194	174	197	194	199	195
	lso	- 2σ	14	14	12	7	13	14	16	16	16	17	16	18	17	11	23	21	21	20	20	19	22	20	20	21	19	21	21	21	19	18	21	20	19	22	21
		206 Pb	1695	1948	1842	1670	2049	1944	2011	2037	2052	2048	2084	2044	2023	1965	2002	1987	2024	2066	2024	2038	2084	2068	1900	2015	2006	2071	2009	1935	1997	2015	1845	2031	2000	2060	2060
5		2σ	14	12	12	12	12	12	13	13	13	13	13	14	13	13	15	15	15	14	14	14	14	14	14	14	14	14	15	15	14	14	16	14	13	14	14
		²⁰⁷ Pb	1708	1952	1866	1698	2031	1950	2026	2029	2030	2043	2073	2049	2026	1959	2028	2005	2041	2062	2040	2049	2073	2059	1927	2026	2036	2070	2027	1937	2005	2021	1913	2034	2011	2057	2064
ע רא-ורג-		2σ	0.0012	0.0011	0.0011	0.0011	0.0011	0.0010	0.0011	0.0011	0.0012	0.0012	0.0012	0.0015	0.0014	0.0012	0.0013	0.0014	0.0014	0.0012	0.0014	0.0014	0.0012	0.0013	0.0012	0.0013	0.0012	0.0013	0.0013	0.0014	0.0012	0.0012	0.0016	0.0012	0.0013	0.0012	0.0013
10-1, UY UI		⁰⁷ Pb	.1060	.1202	.1159	.1063	.1238	.1200	.1262	.1247	.1235	.1255	1271	.1270	.1255	.1197	.1274	.1248	.1272	.1276	.1271	.1278	.1275	.1272	.1203	.1259	.1281	1277	.1265	.1192	.1240	.1251	.1223	.1262	.1252	.1270	.1288
חוב גר-		3	8 0	8	8 0	0 20	0 6(8	0 6(0 6	0 6	0 6	0	0 0	0 0	0 60	1	10	1	0	0 6(0	0	0	0 6(0	11	0	0	0	0	0	2 0	10	0 0	1	0
ווב, אמווו		2σ	0.000	0.000	0.000	0.00	0.000	0.00	0.00	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.00	0.001	0.001	0.001	0.00	0.001	0.00	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
וו בוומבוח	05	²⁰⁸ Pb ²³² Th	0.0832	0.0979	0.0900	0.0827	0.1014	0.0967	0.1028	0.1019	0.1031	0.1024	0.1041	0.1019	0.0978	0.0983	0.1018	0.1005	0.1027	0.1025	0.1012	0.1016	0.1027	0.1028	0.0960	0.1005	0.1029	0.1040	0.1021	0.0954	0.1002	0.1010	0.0902	0.1027	0.1012	0.1039	0.1035
נמו כומו	ope rati	٩	0.56	0.57	0.51	0.47	0.48	09.0	0.70	0.65	0.61	0.64	0.62	0.56	0.52	0.61	0.76	0.62	0.62	0.73	0.62	0.59	0.74	0.63	0.74	0.67	0.74	0.69	0.71	0.66	0.72	0.68	0.63	0.70	0.65	0.71	0.67
ומקווב רו א	lsot	20	0.0029	0.0030	0.0025	0.0021	0.0028	0.0029	0.0033	0.0035	0.0035	0.0036	0.0034	0.0039	0.0036	0.0036	0.0049	0.0044	0.0045	0.0043	0.0043	0.0039	0.0048	0.0043	0.0042	0.0044	0,0040	0.0045	0.0045	0.0045	0400.0	0.0038	0.0044	0.0041	0,0040	0.0046	0.0045
		³⁸ U	3009	3530 (3309	2958	3743 (3522	3663 (3719 (3751 (3742 (3819 (3735 (3689 (3567	3648 (3613 (3692 (3782	3693 (3718	3821 (3788 (3433 (3671 (3655 (3794 (3662 (3505 (3635 (3674 (3316 (3703	3642 (3771 (3769
רט עמנו		3	0.0	0.	0.	0.	0.	0.	0.0	0.	0.	0.	0.	0.	0	0.	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.0	0.	0.0	0.0	0.	0.	0.	0.	0.0	0.	0.
		2σ	0.074	0.079	0.077	0.065	0.089	0.080	0.093	0.092	0.095	0.095	0.099	0.100	0.096	0.085	0.110(0.100	0.110(0.100	0.100	0.100	0.110(0.100	0.093	0.100	0.099	0.110(0.110(0.096	0.100	0.099	0.110(0.099	0.096	0.100	0.110(
די עבאחורא		²⁰⁷ Pb	4.3950	5.8390	5.2920	4.3350	6.4040	5.8330	6.3690	6.3950	6.3980	6.4830	6.7050	6.5390	6.3730	5.8890	6.3970	6.2170	6.4770	6.6340	6.4740	6.5480	6.7050	6.6230	5.6940	6.3760	6.4410	6.7010	6.3940	5.7520	6.2290	6.3350	5.5830	6.4250	6.2680	6.5920	6.6560
anie	#	Jods	-	2	ŝ	4	5	9	7	8	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

Рис. 3. U-Pb діаграми з конкордією для кристалів монациту із ендербіту, проба ВП-10-1, Сабарівський кар'єр, за даними LA-ICP-MS **Fig. 3.** U-Pb isotope plots for monazite crystals from enderbite, sample VP-10-1, Sabariv open pit, according to the LA-ICP-MS data

Вінницит (проба Л-6) розвинутий в північній частині Літинського кар'єру у вигляді розвалів крупних брил, що утворилися після підриву. У вигляді розрізнених фрагментів, вірогідно пластоподібного тіла, вінніцити також поширені у поодиноких відслоненнях на південь від кар'єру. Макроскопічно це масивна середньо-крупнозерниста порода, на окремих ділянках дещо катаклазована.

Мінеральний склад (% об.): плагіоклаз – 25– 30, кварц – 15–25, КПШ – до 15, гранат – 15–20, в окремих скупченнях до – 30, гіперстен – 5–15, біотит – до 5. Акцесорні мінерали представлені апатитом, цирконом і монацитом, серед рудних переважає пірит.

За даними (Касьяненко, 2016), характерною особливістю цього віннициту є гранат, склад якого відповідає альмандину (66–70 %) з вмістом піропового міналу 24–27 % і гросулярового міналу 1–3 %, тоді як частка андрадитового складає 0,2–3 %, а спесартинового не досягає 1 % (0,1–0,7 %). Залізистість гранату сягає 71– 73 %. Часто гранат заміщує гіперстен. Хімічний склад плагіоклазів відповідає альбіту An₈ та олігоклазу An₁₆₋₂₅.

Монацит представлений відносно дрібними (менше 50 µm) переважно пампушкоподібними світло-жовтими прозорими кристалами із сильно заокругленими контурами. В меншій кількості присутні ізометричні зерна, кількість яких дещо зростає у дрібніших фракціях.

Вік монациту визначали методом TIMS за мультизерновими наважками розмірних фракцій монациту, які отримали скочуванням кристалів по нахиленій площині. Результати аналітичних досліджень наведено в табл. 3.

Таблиця 3. Вміст урану, свинцю та ізотопний склад свинцю в монацитах із віннициту, проба Л-6, Літинський кар'єр **Table 3.** Concentrations of Th and U, and isotope composition of Pb in monazite from vinnytsyte (hypersthene-garnet leucogranite), sample L-6, Lityn open pit

al frac-	Con trat pp	cen- ion, om		ls	otope rat	ios			lsotope	age, Ma		D, %	<u>206</u> 238	<u>207</u> 235	Rho
Mineration	U	Pb	²⁰⁶ Pb ²⁰⁴ Pb	²⁰⁶ Pb ²⁰⁷ Pb	²⁰⁶ Pb ²⁰⁸ Pb	²⁰⁶ Pb, ²³⁸ U	²⁰⁷ Pb, ²³⁵ U	²⁰⁶ Pb, ²³⁸ U	²⁰⁷ Pb, ²³⁵ U	²⁰⁷ Pb, ²⁰⁶ PB,	σ		%err	%err	6/8–7/5
1	1987	4593	4960	7,9707	0,15965	0,35939	6,0901	1979	1989	1998,8	±4,0	1,0	1,1	1,13	0,97992
2	1749	3637	1596	7,6482	0,18099	0,35664	6,0258	1966	1980	1993,6	±3,7	1,4	1,1	1,13	0,98263
3	1863	4234	8000	8,0736	0,16104	0,35646	6,0119	1965	1978	1990,3	±1,3	1,3	1,1	1,1	0,99767
4	1846	4663	4920	7,9033	0,14551	0,36283	6,2011	1996	2005	2013,9	±1,4	0,9	1,1	1,1	0,99744

Примітка. Поправка на звичайний свинець уведена за Стейсі та Крамерсом на вік 2000 млрд років: 1–4 – мультизернові наважки розмірних фракцій монациту.

, ppm	∍	537	543	149	949	215	415	490	1217	846	1388	538	262	400	371	388	367	959	1009	290	2373	733	116	190	223	337	102	120	780	359	567	545	752	342	323
ntrations	Ч	12380	17870	437	116700	122300	140000	115800	115600	51400	169600	4300	592	196100	180300	109700	1803	145900	111500	16300	61100	87400	510	1218	851	2310	429	903	7710	2226	8260	6610	4804	97200	144900
Conce	Pb	172	230	5	1809	1963	2089	1738	1759	769	2476	63	7	3044	2790	1647	22	2145	1570	221	921	1327	7	16	12	30	5	7	116	26	130	100	73	1539	2169
	disc	0.4	1.0	0.7	0.6	-3.0	-2.6	-1.2	-1.5	0.6	1.0	-0.3	0.1	-1.7	-3.3	-2.8	0.3	-1.4	4.7	-0.1	-11.9	-4.2	-0.1	-1.7	-1.2	-1.8	0.2	-0.8	÷	0.5	-4.0	-1.5	-2.1	-4.6	-3.3
	2σ	17	20	30	18	23	18	19	20	19	31	21	22	20	22	20	24	26	23	28	31	26	32	28	30	29	37	31	31	32	37	32	32	29	29
	²⁰⁵ Pb	1943	1802	1570	2078	2060	2055	2073	2051	2066	2055	2001	1713	2075	2064	2069	1715	1993	1981	1867	1927	2058	1792	1851	1964	1802	1633	1596	1983	1606	2010	2009	1997	2068	2080
a	2σ	17	18	25	21	23	20	21	20	22	25	20	22	22	21	21	20	25	21	24	28	24	32	23	34	26	30	24	31	25	36	31	30	31	30
e ages, M	²⁰⁸ Pb ²³² Th	1860	1691	1510	2029	2089	2009	2003	2030	2005	1989	1935	1631	2028	2071	2000	1665	1973	1887	1829	2014	2016	1771	1756	1957	1729	1612	1566	1985	1576	2096	2003	2034	2105	2033
Isotop	2σ	16	18	18	22	21	17	17	21	22	38	20	18	19	23	19	21	28	26	23	33	31	24	22	31	24	22	20	36	26	40	37	35	34	33
	²⁰⁶ Pb ²³⁸ U	1935	1784	1559	2066	2121	2108	2097	2082	2054	2035	2007	1712	2111	2132	2127	1709	2021	1888	1869	2156	2144	1794	1882	1987	1834	1629	1608	1962	1598	2090	2040	2039	2164	2149
		12	13	16	14	16	13	13	14	15	17	14	13	14	14	14	15	16	15	15	17	17	18	15	19	17	17	15	19	18	21	20	18	18	19
	²⁰⁷ Pb ²³⁵ U	1940	1799	1567	2073	2094	2083	2084	2065	2061	2036	2007	1716	2096	2095	2097	1716	2007	1931	1867	2040	2103	1794	1872	1975	1821	1631	1605	1975	1598	2042	2019	2016	2117	2108
	5α	0.0012	0.0012	0.0016	0.0013	0.0017	0.0013	0.0014	0.0014	0.0014	0.0024	0.0014	0.0013	0.0015	0.0016	0.0014	0.0014	0.0018	0.0016	0.0017	0.0020	0.0018	0.0019	0.0018	0.0020	0.0017	0.0020	0.0017	0.0022	0.0017	0.0026	0.0023	0.0022	0.0020	0.0021
	⁰⁷ Pb ⁰⁶ Pb	.1195 (.1105 () 6260.	1290 (.1278 (.1271 (1284 (.1271 (.1276 (.1272 (.1237 (1055 (1288 (1284 (.1281 (1056 (.1235 (1223 (.1149 (.1189 (.1278 (.1100 (.1141 (.1214 (.1107 (.1014 (0993 (1228 (1001 (.1246 (.1244 (.1234 (.1283 (1290 (
	a a	0 600	010 0	0.013	0.110	012 0	0 110	0.0	0 110	012 0	013 0	0 110	0.012	0.012	0.012	0 110	0. 110	0.013	0.110	013 0	015 0	013 0	0.017	012 0	018 0	014 0	0.016	0.0	0 217	0.013	0.020	0 710	0.016	0.017	0.017
	2	0.00	0.0(0.0(0.0	0.0(0.0(0.0(0.0(0.0(0.0(0.0	0.0(0.0(0.0(0.0(0.0	0.0(0.0(0.0	0.0(0.0(0.0	0.0(0.0(0.0(0.0(0.0(0.0	0.0(0.0	0.0	0.0(0.0	0.0
0 S	²⁰⁸ Pb	0.0964	0.0873	0.0776	0.1056	0.1089	0.1045	0.1042	0.1057	0.1043	0.1035	0.1005	0.0840	0.1056	0.1079	0.1041	0.0859	0.1024	0.0979	0.0947	0.1047	0.1048	0.0920	0.0908	0.1016	0.0893	0.0830	0.0806	0.1033	0.0811	0.1092	0.1043	0.1060	0.1098	0.1059
ope rati	٩	0.58	0.66	0.45	0.68	0.52	0.61	0.54	0.55	0.65	0.52	0.59	0.54	0.52	0.48	0.48	0.66	0.57	0.64	0.50	0.52	0.63	0.47	0.42	0.46	0.55	0.37	0.40	0.60	0.59	0.55	0.61	0.53	0.63	0.66
Isot	2σ	0.0034	0.0036	0.0036	0.0047	0.0045	0.0037	0.0036	0.0045	0.0046	0.0078	0.0042	0.0036	0.0040	0.0049	0.0041	0.0042	0.0060	0.0055	0.0048	0.0071	0.0066	0.0049	0.0045	0.0066	0.0049	0.0045	0.0040	0.0076	0.0053	0.0086	0.0080	0.0076	0.0073	0.0071
	²⁰⁶ Pb ²³⁸ U	0.3501	0.3189	0.2739	0.3781	0.3899	0.3872	0.3840	0.3813	0.3757	0.3711	0.3657	0.3046	0.3878	0.3917	0.3914	0.3040	0.3684	0.3409	0.3370	0.3974	0.3954	0.3214	0.3396	0.3620	0.3295	0.2879	0.2837	0.3571	0.2820	0.3837	0.3738	0.3735	0.4003	0.3970
	2σ	0.0820	0.0760	0.0720	0.1100	0.1200	0.1000	0.1000	0.1100	0.1100	0.1300	0.1000	0.0710	0.1100	0.1100	0.1100	0.0790	0.1100	0.1000	0.0960	0.1200	0.1300	0.1000	0.0950	0.1300	0.1000	0.0850	0.0730	0.1300	0.0860	0.1500	0.1400	0.1300	0.1400	0.1500
	⁰⁷ Pb	.7730 0	8830 (7000 (.7270 (8670 () 0062	8100 (6650 (9400 (4400 (2350 (4290 (8780 (8900 (9080 (4280 (2390 (.7160 (.3170 C	4820 () 0026	8780 (3400 0	0090	0340 (0070 0	8680 (0300 (8490 C	5200 (3500 (3000 (0600 (0300 (
	and the second se		- 21	m.	Ö	9	o.	9	ى.	Ö		9	4	9.		6.	4	ю.	ъ.	5	9.	9	4	5	ം	Ŀ.	4	e.	<u>ن</u>	e.	<u>ن</u>	6.	ю.	Ч.	~

Рис. 4. U-Pb діаграма з конкордією для мультизернових наважок монациту із віннициту, проба Л-6, Літинський кар'єр Fig. 4. U-Pb isotope plot for multigrain fractions of monazite from vinnytsyte, sample L-6, Lityn open pit

Незаважаючи на досить високу лінійність у розміщенні фігуративних точок свинець-уранових ізотопних відношень на уран-свинцевій діаграмі з конкордією (рис. 4), СКЗВ = 0,11. Отримано значення віку (2055 ± 308) млн років за верхнім перетином та (1604 ± 533) млн років за нижнім. Ураховуючи велику невизначеність (великі похибки), ми виконали позернове датування монациту за допомогою LA-ICP-MS. Результати аналітичних досліджень наведено в табл. 4 та на рис. 5.

Аналіз даних, поданих у табл. 4, дозволяє припустити, що монацити віннициту зазнали багатоетапного порушення уран-свинцевої ізотопної системи або, що менш вірогідно, кристалізувалися впродовж декількох етапів ендогенної активності. В результаті позернового датування було отримано майже безперервну серію конкордантних і субконкордантних ізотопних дат (див. рис. 5), цифрові значення яких за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb лежать в межах від (2097 ± 27) до (1570 ± 30) млн років (див. табл. 4). При цьому дати трьох із 35 проаналізованих кристалів мають відносно молодий вік: аналіз 2 – (1802 ± 20) млн років, дискордантність – 1,0 %; аналіз 22 – (1792 ±

Рис. 5. U-Pb діаграми з конкордією для кристалів монациту із віннициту, проба Л-6, Літинський кар'єр, за даними LA-ICP-MS **Fig. 5.** U-Pb isotope plot for monazite from vinnytsyte, sample L-6, Lityn open pit, according to LA-ICP-MS data

32) млн років, дискордантність – 0,1 %; аналіз 25 – (1802 ± 29) млн років, дискордантність – 1,8 %. Дати ще шести кристалів (аналізи 3, 12, 16, 26, 27 і 29) є ще молодшими і лежать в інтервалі від (1715 ± 24) до (1570 ± 30) млн років (див. табл. 4).

Антипертитовий ендербіт (проба ВП-1) розкритий Тиврівським кар'єром. Основний породний фон у кар'єрі складають зеленувато-сірі середньозернисті антипертитові ендербіти (типу ВП-1), які подекуди січуться тонкими розгалуженими жилами крупнозернистих пегматоїдних ендербітів. У вигляді кутастих тіл різних розмірів (від перших сантиметрів до декількох метрів) серед ендербітів спостерігаються кристалічні сланці.

Ендербіт – зеленувато-сіра середньозерниста порода з масивною текстурою. Мікроструктура гетеробластова дрібно-середньозерниста, гранобластова, рекристалізаційна з елементами катакластичної. Катаклаз проявляється в наявності тонких смужок з тонко- і мікрозернистим подрібненням мінералів на контактах зерен і рідше всередині них та у хвилястому згасанні кварцу. Хімічний склад двох проб антипертитових ендербітів, відібраних у Тиврівському кар'єрі, наведено в табл. 5.

Таблиця 5. Хімічний склад антипертитових ендербітів, розкритих Тиврівським кар'єром **Table 5.** Chemical composition of antiperthyte enderbite, Tyvriv open pit

ple								Oxides	(%)						
Sam	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ 0 ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	S	H20	LOI	Total
1	72,22	0,06	15,54	0,33	0,98	0,00	0,82	3,16	4,60	1,32	0,08	0,02	0,03	0,31	99,47
2	71,52	0,08	15,96	0,55	0,79	0,02	1,37	3,32	4,23	1,38	0,11	0,01	0,04	0,46	99,84

Примітка: 1 – проба ВП-1; 2 – проба ВП-1п. Аналізи виконані в ІГМР НАН України, аналітик А.В. Ренкас.

	mdd	Þ	821	1549	1354	2562	921	1145	881	1598	410	2368	2418	1030	759	1290	1336	3109	2129	2210	864	941	1171	3049	1153	1248	956	3076	3240	721	1461	1342	3400	3134	1581	195	845
	itrations,	ЧĻ	154700	165800	730	20090	132300	260700	238700	19930	4050	12580	899	326400	272400	1530	974	23170	17000	148400	282400	282600	114200	162200	265100	166200	158600	33010	45290	4660	27190	159500	39000	42580	109400	410	285900
	Concer	Pb	2273	2388	10	258	2015	3910	3668	276	59	176	13	4757	4115	21	13	327	255	2150	4218	4315	1638	2431	4067	2424	2354	496	674	72	401	2234	579	630	1612	9	4285
		disc	2.1	2.8	0.7	-2.7	3.6	2.2	2.3	0.6	0.2	1.4	-5.9	2.8	-0.5	-0.9	4.0	-8.7	-4.8	-2.3	2.2	3.0	-0.3	-10.0	-0.6	2.5	0.3	-12.9	-10.0	1.8	0.4	5.0	-9.5	-8.5	-2.1	3.0	1:1
		2σ	16	18	20	20	22	19	20	31	20	20	20	35	16	20	19	20	25	22	20	26	24	22	23	26	28	28	25	18	22	19	16	17	24	22	16
		²⁰⁷ Pb	2039	2031	1979	1767	2042	2046	2049	1922	1997	1896	1940	2072	2050	1950	1873	1879	1952	1984	2060	2149	2016	1911	2028	2018	2001	1876	1906	1973	1997	1991	1913	1928	1988	1817	2037
	B	2σ -	18	18	25	17	25	19	20	24	21	18	21	31	11	27	19	22	22	21	23	25	23	24	21	23	27	27	25	25	21	18	20	19	20	36	17
	ages, Mi	⁸ Pb ²² Th	960	926	931	715	965	003	600	868	606	859	936	011	007	863	786	903	992	924	000	041	924	966	042	949	983	993	983	076	954	873	987	964	969	796	003
	sotope	<u>3</u> 3	22 1	20 1	24 1	22	37 1	23 2	26 2	34 1	22 1	25 1	23	i4 2	l9 2	22 1	1	25	1	25	23 2	34 2	30	26 1	26 2	27 1	36 1	1	32 1	202	21	20	1	8	25 1	1	17 2
		a 🖻	. 96	74	99	15	69	02	02	10	93 2	70	54	13 /		67	86	42	45	29	15	84	23	02	41	. 19	94	18	67 3	37 2	06	91 2	94	,	30	83	14
		J 206	+ 19	3 19	+ 19	3	19	5 20	3 20	, 19	19	+ 18	+ 20	+ 20	+ 20	+ 19	+ 17	5 20	20	+ 20	5 20	3 20	5 20	5 21	5 20	5 19	19	, 21	, 20	+ 19	+ 19	18	20	20	+ 20	1	20
		ъ р	2 1/	6 13	5 14	7 13	9 2′	6 15	2 16	4	1	4 1/	8 1/	9 24	7L _L	2 1/	8 1/	2 15	2 15	0 14	1	1	6 16	5 16	9 15	1	1	0	9	5 1/	5 1/	0 13	4 13	4	71 17	5 14	0 13
		207 PI	202	200	197	179	200	202	203	191	200	188	199	203	205	196	183	196	200	201	204	212	201	201	203	199	199	200	199	195	199	194(200	201	201	179	203
		2σ	0.0012	0.0013	0.0014	0.0012	0.0016	0.0013	0.0014	0.0019	0.0014	0.0013	0.0014	0.0025	0.0011	0.0013	0.0012	0.0013	0.0017	0.0015	0.0015	0.0020	0.0016	0.0015	0.0016	0.0018	0.0020	0.0018	0.0017	0.0012	0.0015	0.0013	0.0011	0.0012	0.0016	0.0013	0.0011
		²⁰⁷ Pb	0.1262	0.1256	0.1218	0.1086	0.1261	0.1267	0.1268	0.1184	0.1231	0.1165	0.1194	0.1287	0.1268	0.1199	0.1148	0.1150	0.1205	0.1223	0.1277	0.1340	0.1241	0.1175	0.1254	0.1251	0.1236	0.1156	0.1167	0.1215	0.1235	0.1229	0.1173	0.1185	0.1230	0.1117	0.1259
		2σ	0.0010	0.0010	0.0014	0.0009	0.0014	0.0010	0.0011	0.0013	0.0012	0.0010	0.0011	0.0017	0.0009	0.0015	0.0011	0.0012	0.0012	0.0011	0.0013	0.0014	0.0013	0.0013	0.0012	0.0012	0.0015	0.0015	0.0014	0.0014	0.0011	0.0010	0.0011	0.0010	0.0011	0.0019	0.0009
	S	²⁰⁸ Pb ²³² Th	0.1019	0.1000	0.1003	0.0886	0.1021	0.1042	0.1045	0.0969	0660.0	0.0963	0.1004	0.1046	0.1044	0.0966	0.0924	0.0987	0.1036	0.0999	0.1041	0.1063	0.0998	0.1038	0.1062	0.1013	0.1032	0.1037	0.1031	0.1082	0.1015	0.0971	0.1033	0.1021	0.1024	0.0930	0.1041
	pe ratio	ď	0.78	0.67	.66	0.67	0.84	0.69	0.76	0.62	0.65	0.74	09.0	.69	0.75	.64	0.75	0.67	0.61	0.58	0.62	0.63	0.61	0.62	.64	0.55	.64	0.59	0.65	0.63	0.41	0.61	0.70	0.57).53	0.54	0.69
	Isoto	Þ	047 ()43 (051 (044)78 ()49 ()55 (072 (047 ()52 ()48 ()95 (041 ()46 ()43 ()54 (061 ()53 ()49 (073 ()64 ()55 ()53 ()57 (075 ()68 ()68 (041 ()45 (041 (041 ()38 ()54 (335 (037 (
<i>)</i>		5	0.0(0.0(0.0	0.0(0.0	0.0(0.0(0.0(0.0	0.0(0.0	0.0(0.0	0.0	0.0	0.0	0.0(0.0	0.0(0.0(0.0	0.0(0.0(0.0(0.0	0.0(0.0(0.0	0.0	0.0	0.0(0.0	0.0(0.0(0.0
		²⁰⁶ Pb	0.3636	0.3587	0.3572	0.3257	0.3579	0.3648	0.3648	0.3458	0.3627	0.3371	0.3757	0.3671	0.3768	0.3569	0.3221	0.3731	0.3741	0.3705	0.3674	0.3825	0.3696	0.3862	0.3721	0.3569	0.3632	0.3893	0.3855	0.3509	0.3622	0.3410	0.3841	0.3837	0.3708	0.3149	0.3670
2 444115		2σ	0.1000	0960.0	0.0980	0.0780	0.1400	0.1100	0.1200	0.1100	0.1000	0.0880	0.0960	0.1800	0.1000	0.0950	0.0880	0.1000	0.1100	0.0970	0.1100	0.1500	0.1200	0.1100	0.1100	0.1100	0.1300	0.1200	0.1200	0.0940	0.0970	0.0890	0.0920	0.0890	0.1000	0.0820	0.0960
		²⁰⁷ Pb	6.3380	6.2300	6.0130	4.8780	6.2400	6.3860	6.4180	5.6140	6.1880	5.4140	6.1650	6.4800	6.5940	5.9290	5.1240	5.9250	6.2070	6.2400	6.4860	7.1200	6.3230	6.2630	6.4790	6.1430	6.1700	6.2000	6.1700	5.8800	6.1560	5.7770	6.2150	6.2760	6.2720	4.8550	6.3890
	#	JodS	-	5	e	4	5	9	~	8	6	10	Ę	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

Рис. 6. U-Pb діаграми з конкордією для кристалів монациту із антипертитового ендербіту, проба ВП-1, Тиврівський кар'єр, за даними LA-ICP-MS

Fig. 6. U-Pb isotope plot for monazite from antiperthite enderbite, sample VP-1, Tyvriv open pit, according to LA-ICP-MS data

Мінеральний склад (% об.): плагіоклаз – 70–65, кварц – 28–32, калішпат (лише в антипертитових включеннях) – 5–9, біотит – до 1, гіперстен < 1. Вторинні – карбонат, зелений хлорит. Акцесорні – апатит, циркон, монацит, рудний.

Плагіоклаз (олігоклаз) ізометричний та неправильної форм, розмір кристалів варіює від 0,1 до 4 мм, у середньому 1–2 мм. Зерна з інтенсивно проявленою антипертитовою будовою, інколи з пойкілітовими включеннями кварцу. Вторинні зміни проявляються незначною мірою.

Кварц сплощеної, ізометричної та неправильної форм, розмір кристалів коливається в межах 0,1–5 мм (не враховуючи рекристалізаційну масу), характерне дуже нерівномірне блокове, мозаїчне, хвилясте згасання.

Хлорит світло-зеленого кольору, разом із зеленим біотитом та карбонатом утворює повні псевдоморфози по гіперстену, що мав призматичну та ізометричну форми, зрідка містить його релікти. Також розвивається по плагіоклазу та знаходиться в тонкозернистій рекристалізаційній масі.

Монацит спостерігається в поодиноких дрібних блідо-жовтих прозорих кристалах переважно ізометричної, зрідка пампушкоподібної форм із сильно заокругленими контурами. Через невелику кількість зерен монациту їх вік визначили лише методом LA-ICP-MS. Результати позернового датування наведено в табл. 6 та на рис. 6.

І в даному випадку ми отримали ізотопні дані, які не можна інтерпретувати в рамках моделі Аренса-Везеріла. Майже всі фігуративні точки свинець-уранових ізотопних відношень, за невеликого відхилення, лежать вздовж конкордії (див. рис. 6); при цьому за ізотопним відношенням ²⁰⁷Pb/²⁰⁶Pb числові значення віку знаходяться в інтервалі від (2149 ± 26) до (1767 ± 20) млн років. Як і у попередніх пробах, для двох зерен монациту із 35 отримано молоді значення віку: аналіз 4 – (1767 ± 20) млн років (дискордантність – 2,7 %); аналіз 34 – (1817 ± 22) млн років (дискордантність – 3,0 %) (див. табл. 6).

Обговорення

Породні парагенезиси Середнього Побужжя характеризуються тривалою історією геологічного розвитку (Лесная, 1988; Щербак и др., 2005; Claesson et al., 2006). Одним з головних етапів цього розвитку був метаморфізм гранулітової фації, який супроводжувався активним гранітоутворенням і відбувався близько 2,1–2,0 млрд років тому. Гранітоїди цього віку широко розповсюджені на всій території Дністровсько-Бузького району УЩ (Щербаков, 2005; Щербак и др., 2008;).

Оскільки циркон та монацит мають високі температури закриття ізотопних систем, що наближаються до температур кристалізації кислих магматичних розплавів або й навіть їх перевищують, визначений за їхньою допомогою вік має відповідати віку кристалізації гірських порід. Втім, як було показано попередніми дослідниками (Плоткина, 1994; Степанюк, 2024) і як видно з результатів наших досліджень, деякі з монацитів та цирконів із порід Дністровсько-Бузького району мають вік, значно молодший за вік гранулітового метаморфізму. Подібне явище можна пояснити або тривалим знаходженням гірських порід в умовах гранулітової фації метаморфізму, або ж впливом більш пізньої події, яка спричинила часткову втрату радіогенного свинцю або ж кристалізацію нових кристалів циркону та монациту. Розглянемо обидві можливості.

Окрім сформованих у РТ-умовах гранулітової фації гранітоїдів Дністровсько-Бузького району, циркони віком (1779 ± 10) млн років були виявлені в амфіболітах новокриворізької світи близького віку (1750–1780 млн років) – в породах тетерівської серії (Щербак и др., 2008). Враховуючи знаходження пізньопалеопротерозойських цирконів у геологічних формаціях різних районів УЩ, було запропоновано їх зв'язок з процесами колізії двох сегментів Східноєвропейської платформи – Сарматського та Фенноскандинавського, який відбувався саме в цей час (Elming et al., 2010). Цей час також збігається з формуванням численних дайок основного та ультраосновного складу, на Верхньому Побужжі представлених так званим Верхньобузьким дайковим полем (Цымбал и др., 2007), вік якого був визначений за баделеїтом у (1722 ± 12) млн років (Elming et al., 2010), а також Коростенського та Корсунь-Новомиргородського анортозит-рапаківігранітних масивів (Верхогляд, 1995; Щербак и др., 2008; Шестопалова, 2017). У Приазовському районі на цьому етапі укорінилися великі розшаровані інтрузиви, складені піроксенітами, сублужними ферогабро, плагіоклазитами, монцонітами, сієнітами, кварцовими сієнітами та амфібол-біотитовими гранітами та виокремлені у південнокальчицький комплекс (Шеремет и др., 2012). Окрім того, були сформовані штокоподібні масиви рідкіснометалевих гранітів кам'яномогильського комплексу (Шеремет и др., 2014) та Октябрський масив, складений сублужними основними та ультраосновними породами (габро, піроксенітами, перидотитами), лужними сієнітами, нефеліновими сієнітами (фойяїтами, маріуполітами) (Кривдик, Ткачук, 1990).

Таким чином, наявні геологічні та геохронологічні дані вказують на те, що близько 1800– 1750 млн років тому УЩ зазнавав активних тектонічних і магматичних процесів. Вкорінення в земну кору величезних мас основних і ультраосновних розплавів призводило до її розігріву і часткового плавлення з утворенням гранітоїдних розплавів. Отже, температури розігріву могли сягати в нижній корі 650–700 °С. Цей розігрів міг спричинити або кристалізацію нових генерацій монациту та циркону, або ж часткову або повну втрату вже існуючими кристалами радіогенного свинцю та їх позірне «омолодження».

Втім, звичайний об'ємний (кондуктивний) розігрів (± залишкове тепло) кристалічних порід кори мав би рівною мірою впливати на всі кристали циркону та монациту в певному об'ємі породи. Однак ми спостерігаємо, що цей вплив мав якийсь вибірковий характер. Тобто у випадку, коли поява молодих цирконів та монацитів була зумовлена виключно тривалим часом охолодження, то високі температури впливали б однаковою мірою на всі кристали в породах і на всі породи УЩ. Але у нас, окрім окремих випадків «невдалих» датувань, є велика кількість дат з досить незначними похибками (Степанюк, 2024). Наразі ми схиляємося до думки, що причина в іншому. А саме в ході колізійних процесів, що супроводжувалися розігрівом кори, відбувалося проникнення флюїдів у відносно тонких протяжних лінійних зонах тектонічних порушень (тектонічних деформацій). Саме цим (анізотропією прояву процесу) можна пояснити, чому в одній пробі (5-10 кг) присутні як давні, так і молоді монацити (циркони) та чому в породах з інших ділянок території УЩ молоді кристали цих мінералів відсутні.

Висновки

У межах Дністровсько-Бузького району УЩ набули розвитку породні парагенезиси, в яких високотемпературні мінерали-геохронометри (циркон та монацит) характеризуються широким діапазоном віків. При цьому наймолодші із зафіксованих U-Pb віків становлять 1800–1700 млн років, що на 200-300 млн років пізніше часу прояву гранулітового метаморфізму та вкорінення гранітоїдних масивів. Причинами такого омолодження віку циркону та монациту можуть бути як тривале перебування породних парагенезисів в умовах гранулітової фації метаморфізму, так і повторний розігрів земної кори внаслідок укорінення великого обсягу мантійних розплавів, що супроводжувалися проникненням у зонах тектонічних деформацій флюїдів, що, на наш погляд, є більш вірогідним. Не виключено, що обидва фактори мали сумісний вплив.

Це дослідження було частково профінансовано дослідницьким проєктом Інституту геологічних наук Польської академії наук «Petrochron».

Обговорюються результати уран-свинцевого ізотопного датування (метод TIMS і LA ICP MS) монацитів із піроксенвмісних гранітоїдів Дністровсько-Бузького району Українського щита. Отримані аналітичні результати датування мультизернових наважок монациту методом TIMS не відповідають моделі Аренса-Везеріла. У результаті використання позернового датування методом LA ICP MS серед кристалів монациту із тих же порід виявлено як давні (віком понад 2,0 млрд років), так і молоді (1,7–1,8 млрд років) кристали.

Поява молодих кристалів може бути зумовлена не тільки поступовим охолодженням порід, але й, що більш вірогідно, повторним їх розігрівом, спричиненим формуванням магматичної провінції 1,80–1,75 млрд років тому. Наразі провінція репрезентована численними полями дайок, двома габро-анортозит-рапаківігранітними масивами у Волинському й Інгульському районах Українського щита (Коростенський і Корсунь-Новомиргородський, відповідно) та численними інтрузивами ультраосновного складу, сублужними породами та гранітами в Приазовському районі. Тектоно-магматична активізація, окрім повторного розігріву, супроводжувалася проникненням флюїдів у зонах тектонічних деформацій, що і могло спричинити кристалізацію (омолодження) віку кристалів монациту і циркону. Саме цим (анізотропією прояву процесу) можна пояснити, чому в одній пробі вагою 5–10 кг присутні як давні, так і молоді монацити (циркони) і чому в породах з інших ділянок території Українського щита молоді кристали цих мінералів відсутні. Не виключено, що обидва фактори мали сумісний вплив.

Список літератури

- Бартницкий Е.Н., Бибикова Е. В., Верхогляд В.М., Легкова Г.В., Скобелев В.М., Терец Г.Я. Международный стандарт циркона для уран-свинцовых изотопных исследований. *Геохимия и рудообразование*. 1995. Вып. 21. С. 164–167.
- Верхогляд В.М. Возрастные этапы магматизма Коростенского плутона. Геохимия и рудообразование. 1995. № 21. С. 34–47.
- Геохронологическая шкала докембрия Украинского щита. Щербак Н.П., Артеменко Г.В., Бартницкий Е.Н., Верхогляд В.М., Комаристый А.А., Лесная И.М., Мицкевич Н.Ю., Пономаренко А.Н., Скобелев В.М., Щербак Д.Н. Киев: Наукова думка, 1989. 144 с.
- Гранулитовая фация Украинского щита. Белевцев Р.Я., Яковлев Б.Г., Щербакова Т.Г. Киев: Наукова думка, 1985. 219 с.
- Касьяненко К.О. Петрологія чарнокітоїдів Літинської структури: автореф. дис. ... канд. геол. наук. Київ, 2016. 22 с.
- Кривдик С.Г., Ткачук В.И. Петрология щелочных пород Украинского щита. Киев: Наукова думка, 1990. 407 с.
- Кривдік С.Г., Кравченко Г.Л., Томурко Л.Л., Дубина О.В., Загнітко В.М., Рокачук Т.А., Шнюкова К.Є., Мінеєва В.М. Петрологія і геохімія чарнокітоїдів Українського щита. Київ: Наукова думка, 2011. 216 с.
- Курепин В.А. Термодинамичекие условия образования гранат-кордиерит-биотитовой ассоциации в бердичевских гранитах (Украинский щит). *Минерал. журн.* 1991. Т. 13, № 1. С. 76–87.
- Лесная И.М. Геохронология чарнокитоидов Побужья. Киев: Наукова думка, 1988. 133 с.
- Метаморфизм Украинского щита. Усенко И.С., Щербаков И.Б., Белевцев Р.Я., Сироштан Р.И., Этингоф И.М., Щербакова Т.Г., Половко Н.И., Кравченко Л.Г., Яковлев Б.Г., Орса В.И., Венидиктов В.М., Зюлцле В.В. Киев: Наукова думка, 1982. 308 с.
- Плоткина Т.Э. Геохимия и петрология эндербито-гнейсов и кристаллосланцев Хащевато-Завальевского блока Украинского щита: автореф. дис. ... канд. геол.-мин. наук: 04.00.02 / ИГМР АН Украины. Киев, 1994. 24 с.
- Рябенко В.А. Основные черты тектонического строения Украинского щита. Киев: Наукова думка, 1970. 125 с.
- Степанюк Л.М. Монацитометрія Українського щита (Волинський і Дністровсько-Бузький мегаблоки). Київ: Академперіодика, 2024. 232 с.
- Стратиграфические разрезы докембрия Украинского щита. Щербак Н.П., Есипчук К.Е., Берзенин Б.З., Глевасский Е.Б., Дранник А.С., Пийяр Ю.К., Скаржинская Т.А., Соловицкий В.Н., Этингоф И.М., Клочков В.М., Решетняк В.В. Киев: Наукова думка, 1985. 168 с.
- Шеремет Е.М., Мельников В.С., Стрекозов С.Н., Козар Н.А., Возняк Д.К., Кульчицкая А.А., Кривдик С.Г., Бородыня Б.В., Волкова Т.П., Седова Е.В., Омельченко А.А., Николаев И.Ю., Николаев Ю.И., Сетая Л.Д., Агаркова Н.Г., Гречановская Е.Е., Фощий Н.В., Екатериненко В.Н. Азовское редкоземельное месторождение Приазовья Украинского щита. Донецк: Ноулидж, 2012. 374 с.
- Шеремет Е.М., Кривдик С.Г., Седова Е.В. Редкометалльные граниты Украинского щита (петрология, геохимия, геофизика и рудоносность). Донецк: Ноулидж, 2014. 251 с.
- Шестопалова О.Є. Геохронологія Корсунь-Новомиргородського плутону: автореф. ... канд. геол. наук. Київ, 2017. 21 с.
- Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита. Архей. Киев: Наукова думка, 2005. 244 с.
- Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н., Шумлянский Л.В. Геохронология раннего докембрия Украинского щита. Протерозой. Киев: Наукова думка, 2008. 239 с.
- Щербаков И. Б. Петрология Украинского щита. Львов: ЗУКЦ, 2005. 366 с.
- Цымбал С.Н., Кривдик С.Г., Довгань Р.Н., Павлюк В.Н. Субщелочные габбро-диабазы юго-западной части Украинского щита. *Мінерал. журн.* 2007. Т. 29, № 1. С. 44–57.

- Broska I., Siman P. The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. *Geologica Carpathica*. 1998. Vol. 49. P. 161–167.
- Budzyń B., Wirth R., Sláma J., Kozub-Budzyń G.A., Rzepa G., Schreiber A. A detailed and comprehensive TEM, EPMA and Raman characterization of high-metamorphic grade monazite and their U-Th-Pb systematics (the Góry Sowie Block, SW Poland). *Chemical Geology.* 2022. Vol. 607. P. 121015.
- Cherniak D.J., Watson E.B., Grove M., Harrison T.M. Pb diffusion in monazite: a combined RBS/SIMS study. *Geochimica et Cosmochimica Acta*. 2004. Vol. 68 (4). P. 829–840.
- Claesson S., Bibikova E., Bogdanova S., Skobelev V. Archaean terranes, Palaeoproterozoic reworking and accretion in the Ukrainian Shield, East European Craton. *European Lithosphere Dynamics*. Geological Society, London, Memoirs. 2006. Vol. 32. P. 645–654. 0435-4052/06/\$15.00
- Clark C., Kirkland C.L., Spaggiari C.V., Oorschot C., Wingate M.T.D., Taylor R.J. Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range Metamorphics, Western Australia. *Precambrian Research*. 2014. Vol. 240. P. 1–21. https://doi.org/10.1016/j.precamres.2013.07.024
- Elming S.Å., Shumlyanskyy L., Kravchenko S., Layer P., Söderlund U. Proterozoic Basic dykes in the Ukrainian Shield: a palaeomagnetic, geochronologic and geochemical study – the accretion of the Ukrainian Shield to Fennoscandia. *Precambr. Res.* 2010. Vol. 178. P. 119–135. https://doi.org/10.1016/j.precamres.2010.02.001
- Grand'Homme A., Janots E., Seydoux-Guillaume A.M., Guillaume D., BosseV., Magnin V. Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement. *Geology*. 2016. Vol. 44. P. 431–434
- Harley S.L., Nandakumar V. Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India. *Journal of Petrology*. 2014. Vol. 55 (10). P. 1965–2002.
- Krough T.E. A law contamination method for hedrotermal decomposition of zircon and extraction of U and Pb for isotopic age determination. *Geochiica. Cosmochimica Acta.* 1973. Vol. 37, No. 3. P. 485–494.
- Ludwig K.R. Pb Dating for MS-DOS, version 1.06. U.S. Geol. Survey Open-File Rept. 1989. No. 88–542. P. 40.
- Ludwig K.R. ISOPLOT for MS-DOS, version 2.0. U.S. Geol. Survey Open-File Rept. 1990. No. 88–557. P. 38.
- Seydoux-Guillaume A.M., Montel J.M., Bingen B., Bosse V., De Parseval P., Paquette J., Janots E., Wirth R. Low-temperature alteration of monazite: Fluid-mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. *Chemical Geology*. 2012. Vol. 330–331. P. 140–158.
- Spear F.S., Pyle J.M. Apatite, monazite, and xenotime in metamorphic rocks. *Reviews in Mineralogy and Geochemistry*. 2002. Vol. 48 (1). P. 293–335.
- Williams M.L., Jercinovic M.J., Hetherington C.J. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. *Annual Review of Earth and Planetary Sciences.* 2007. Vol. 35. P. 137–175.
- Taylor R.J.M., Kirkland C.L., Clark C. Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. *Lithos*. 2016. Vol. 264. P. 239– 257. https://doi.org/10.1016/j.lithos.2016.09.004

References

- Bartnytskyi E.N., Bibikova E.V., Verkhogliad V.M., Legkova G.V., Skobelev V.M., Terets G.Ya. 1995. An international zircon standard for uranium-lead isotope studies. *Geochemistry and ore formation*, 21: 164–167 (in Russian).
- Broska I., Siman P. 1998. The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. *Geologica Carpathica*, 49: 161–167.

- Budzyń B., Wirth R., Sláma J., Kozub-Budzyń G.A., Rzepa G., Schreiber A. 2022. A detailed and comprehensive TEM, EPMA and Raman characterization of high-metamorphic grade monazite and their U-Th-Pb systematics (the Góry Sowie Block, SW Poland). Chemical Geology, 607: 121015.
- Cherniak D.J., Watson E.B., Grove M., Harrison T.M. 2004. Pb diffusion in monazite: a combined RBS/SIMS study. *Geochimica et Cosmochimica Acta*, 68: 829–840.
- Claesson S., Bibikova E., Bogdanova S., Skobelev V. 2006. Archaean terranes, Palaeoproterozoic reworking and accretion in the Ukrainian Shield, East European Craton. European Lithosphere Dynamics. Geological Society, London, Memoirs, 32: 645–654. 0435-4052/06/\$15.00
- Clark C., Kirkland C.L., Spaggiari C.V., Oorschot C., Wingate M.T.D., Taylor R.J. 2014. Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range metamorphics, Western Australia. *Precambrian Research*, 240: 1–21. https://doi.org/10.1016/j.precamres.2013.07.024
- Elming S.-Å., Shumlyanskyy L., Kravchenko S., Layer P., Söderlund U. 2010. Proterozoic Basic dykes in the Ukrainian Shield: a palaeomagnetic, geochronologic and geochemical study – the accretion of the Ukrainian Shield to Fennoscandia. *Precambrian Research*, 178: 119–135. https://doi. org/10.1016/j.precamres.2010.02.001
- Geochronological scale of the Precambrian of the Ukrainian shield. Shcherbak N.P., Artemenko G.V., Bartnytskyi E.N., Verkhoglyad V.M., Komaristy A.A., Lesnaya I.M., Mytskevich N.Yu., Ponomarenko A.N., Skobelev V.M., Shcherbak D.N. 1989. Kyiv: Naukova Dumka. 144 p. (in Russian).
- Granulite facies of the Ukrainian Shield. R.Ya. Belevtsev, B.G. Yakovlev T.G. Shcherbakova. 1985. Kyiv: Naukova Dumka. 219 p. (in Russian).
- Grand'Homme A., Janots E., Seydoux-Guillaume A.M., GuillaumeD., Bosse V., Magnin V. 2016. Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement. *Geology*, 44: 431–434.
- Harley S.L., Nandakumar V. 2014. Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India. *Journal of Petrology*, 55: 1965–2002.
- Kasianenko K.O. 2016. Petrology of charnockitoids of the Lityn structure. PhD thesis (abstract). Kyiv. 22 p. (in Ukrainian).
- Kryvdik S.G., Tkachuk V.I. 1990. Petrology of alkaline rocks of the Ukrainian Shield. Kyiv: Naukova Dumka. 408 p. (in Russian).
- Kryvdik S.G., Kravchenko G.L., Tomurko L.L., Dubyna O.V., Zagnitko V.M., Rokachuk T.A., Shnyukova K.E., Mineeva V.M. 2011. Petrology and geochemistry of charnochitoids of the Ukrainian Shield. Kyiv: Naukova Dumka. 216 p. (in Ukrainian).
- Krough T.E. 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. *Geochimica Cosmochimica Acta*, 37: 485–494.
- Kurepin V.A. 1991. Thermodynamic conditions of formation of garnet-cordierite-biotite association in Berdichev granites (Ukrainian Shield). *Mineral. journal*, 13 (1): 76–87 (in Russian).
- Lesnaya I.M. 1988. Geochronology of charnockites of the Bouh area. Kyiv: Naukova Dumka. 136 p. (in Russian).
- Ludwig K.R. 1989. Pb Dating for MS-DOS, version 1.06. U.S. Geol. Survey Open-File Rept., 88–542: 40.
- Ludwig K.R. 1990. ISOPLOT for MS-DOS, version 2.0. U.S. Geol. Survey Open-File Rept., 88-557: 38.
- Metamorphism of the Ukrainian Shield. Usenko I.S., Shcherbakov I.B., Belevtsev R.Ya., Syroshtan R.Y., Etingof I.M., Shcherbakova T.G., Polovko N.Y., Kravchenko L.G., Yakovlev B.G., Orsa V.Y., Venidiktov V.M., Zyultsle V.V. 1982. Kyiv: Naukova Dumka. 308 p. (in Russian).
- Plotkina T.E. 1994. Geochemistry and petrology of enderbito-gneisses and crystalline slates of the Khashchevato-Zavalyevsky block of the Ukrainian Shield. Autoref. dis. ... Candidate Geological-Mineralogical Sciences: 04.00.02 / IGMR Academy of Sciences of Ukraine. Kyiv. 24 p. (in Russian).

- Ryabenko V.A. 1970. The main features of the tectonic structure of the Ukrainian Shield. Kyiv: Naukova Dumka. 125 p. (in Russian).
- Seydoux-Guillaume A.M., Montel J.M., Bingen B., Bosse V., De Parseval P., Paquette J., Janots E., Wirth R. 2012. Low-temperature alteration of monazite: Fluid-mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. *Chemical Geology*, 330–331: 140–158.
- Shcherbak N.P., Artemenko G.V., Lesnaya I.M., Ponomarenko O.M. 2005. Geochronology of the Early Precambrian. Archean. Kyiv: Naukova Dumka. 244 p. (in Russian).
- Shcherbak N.P., Artemenko G.V., Lesnaya I.M., Ponomarenko O.M., Shumlyanskyy L.V. 2008. Geochronology of the Early Precambrian. Proterozoic. Kyiv: Naukova Dumka. 240 p. (in Russian).
- Shcherbakov I.B. 2005. Petrology of the Ukrainian Shield. Lviv: ZUKTs. 366 p. (In Russian).
- Sheremet Y.M., Melnikov V.S., Strekozov S.N., Kozar N.A., Voznyak D.K., Kulchitskaya A.A., Krivdik S.G., Borodynya B.V., Volkova T.P., Sedova E.V., Omelchenko A.A., Nikolayev I.Y., Setaya L.D., Agarkova N.G., Grechanovskaya Y.Y., Foschiy N.V., Ekaterinenko V.N. 2012. The Azov rare-earth deposit in the Azov region of the Ukrainian Shield. Donetsk: Knowledge. 374 p. (in Russian).
- Sheremet Ye.M., Kryvdik S.G., Sedova E.V. 2014. Rare metal granites of the Ukrainian Shield (petrology, geochemistry, geophysics and ore potential). Donetsk: Knowledge. 251 p. (in Russian).
- Shestopalova O.E. 2017. Geochronology of the Korsun-Novomyrhorod Pluton. Abstract for the degree of Candidate of Geological Sciences. Kyiv. 21 p. (in Ukrainian).
- Spear F.S., Pyle J.M. 2002. Apatite, monazite, and xenotime in metamorphic rocks. *Reviews in Mineralogy and Geochemistry*, 48 (1): 293–335.
- Stepanyuk L.M. 2024. Monazitometry of the Ukrainian Shield (Volyn and Dniester-Bouh domains). Kyiv: Akademperiodyka. 232 p. (in Ukrainian).
- Stratigraphic sections of the Precambrian of the Ukrainian Shield. Shcherbak N.P., Esypchuk K.E., Berzenin B.Z., Hlevassky E.B., Drannyk A.S., Piyyar Y.K., Skarzhinskaya T.A., Solovitsky V.N., Etingoff I.M., Klochkov V.M., Reshetnyak V.V. 1985. Kyiv: Naukova Dumka. 168 p. (in Russian).
- Verhoglyad V.M. 1995. Age stages of magmatism of the Korosten pluton. *Geochemistry and ore formation*, 21: 34–47 (in Russian).
- Williams M.L., Jercinovic M.J., Hetherington C.J. 2007. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137–175.
- Taylor R.J.M., Kirkland C.L., Clark C. 2016. Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. *Lithos*, 264: 239–257. https://doi.org/10.1016/j.lithos.2016.09.004
- Tsymbal S.N., Kryvdyk S.G., Dovgan R.N., Pavlyuk V.N. 2007. Subalkaline gabbro-diabase of the southwestern part of the Ukrainian Shield. *Mineral. Journal*, 29 (1): 44–57 (in Russian).